Первая космологическая модель-модель Эйнштейна

Первая космологическая модель была по­строена А. Эйнштейном в 1917 г. вскоре после создания им Общей теории относительности. Как и все тогда, он счи­тал, что Вселенная должна быть стационарна, она не может направленно эволюционировать. Эта модель создавалась более чем за десять лет до открытия Э. Хаббла. А. Эйнштейн, по-видимому, ничего не знал о больших скоростях некоторых галактик, которые к тому времени уже были измерены. К тому же в то время не было еще надежных доказательств, что галактики — действительно далекие звездные системы. Излагая свою Модель, Эйнштейн писал: «Самое важное из всего, что вам известно из опыта о распределении материи, заклю­чается в том, что относительные скорости звезд очень малы по сравнению со скоростью света. Поэтому я по­лагаю, что на первых порах в основу наших рассужде­ний можно положить следующее приближенное допуще­ние: имеется координатная система, относительно кото­рой материю можно рассматривать находящейся в течение продолжительного времени в покое».

Исходя из таких соображений, Эйнштейн ввел косми­ческую силу отталкивания, которая делала мир стацио­нарным. Эта сила универсальна: она зависит не от мас­сы тел, а только от расстояния, их разделяющего. Уско­рение, которое эта сила сообщает любым телам, разне­сенным на расстояние, должно быть пропорционально расстоянию. Силы отталкивания, если они, конечно, существуют в природе, можно было бы обнаружить в достаточно точных лабораторных опытах. Однако малость величины делает задачу ее лабораторного обнаружения совершенно безнадежной. Действительно, это ускорение пропорцио­нально расстоянию и в малых масштабах ничтожно. Легко подсчитать, что при свободном падении тела на поверхность Земли добавочное ускорение в 1030 раз меньше самого ускорения свободного падения. Даже в масштабе Солнечной системы или всей нашей Галактики эти силы ничтожно малы по сравнению с силами тяготе­ния.. Разумеет­ся, это отталкивание никак не сказывается на движении тел Солнечной системы и может быть обнаружено толь­ко при исследовании движений самых отдаленных на­блюдаемых галактик.

Так, в уравнениях тяготения Эйнштейна появилась космологическая постоянная, описывающая силы оттал­кивания вакуума. Действие этих сил столь же универ­сально, как и сил всемирного тяготения, т. е. оно не за­висит от физической природы тела, на котором проявля­ется, поэтому логично назвать это действие гравитацией вакуума.

Через несколько лет после работы Эйнштейна, А. А. Фридманом была создана теория расширяющейся Вселенной. А. Эйнштейн сначала не соглашался с выво­дами советского математика, но потом полностью их при­знал.

После открытия Э. Хабблом расширения Вселенной какие-либо основания предполагать, что в природе суще­ствуют космические силы отталкивания, казалось бы отпали.

 

Космологические парадоксы

 

 

Фотометрический парадокс

 

Первая брешь в этой спокойной классической космологии была пробита еще

в XVIII в. В 1744 г. астрономом Р. Шезо, известный открытием необычной

«пятихвостой» кометы, высказал сомнение в пространственной бесконечности

Вселенной. В ту пору о существовании звездных систем и не подозревали,

поэтому рассуждения Шезо касались только звезд.

Если предположить, утверждал Шезо, что в бесконечной Вселенной

существует бесчисленное множество звезд и они распределены в пространстве

равномерно, то тогда по любому направлению взгляд земного наблюдателя

непременно натыкался бы на какую-нибудь звезду. Легко подсчитать, что

небосвод, сплошь усеянный звездами, имел бы такую поверхностную яркость,

что даже Солнце на его Фоне казалось бы черным пятном. Независимо от Шезо в

1823 г. к таким же выводам пришел известный немецкий астроном Ф. Ольберс.

Это парадоксальное утверждение получило в астрономии наименование

фотометрического парадокса Шезо-Ольберса. Таков был первый космологический

парадокс, поставивший под сомнение бесконечность Вселенной.

Устранить этот парадокс ученые пытались различными путями. Можно было

допустить, например, что звезды распределены в пространстве неравномерно.

Но тогда в некоторых направлениях на звездном небе было бы видно мало

звезд, а в других, если звезд бесчисленное множество, их совокупная яркость

создавала бы бесконечно яркие пятна, чего, как известно, нет.

Когда открыли, что межзвездное пространство не пусто, а заполнено

разреженными газово-пылевыми облаками, некоторые ученые стали считать, что

такие облака, поглощая свет звезд, делают их невидимыми для нас. Однако в

1938 г. академик В. Г. Фесенков доказал, что, поглотив свет звезд, газово-

пылевые туманности вновь переизлучают поглощенную ими энергию, а это не

избавляет нас от фотометрического парадокса.

 

Гравитационный парадокс

 

В конце XIX в. немецкий астроном К. Зеелигер обратил внимание и на

другой парадокс, неизбежно вытекающий из представлений о бесконечности

Вселенной. Он получил название гравитационного парадокса. Нетрудно

подсчитать, что в бесконечной Вселенной с равномерно распределенными в ней

телами сила тяготения со стороны всех тел Вселенной на данное тело

оказывается бесконечно большой или неопределенной. Результат зависит от

способа вычисления, причем относительные скорости небесных тел могли быть

бесконечно большими. Так как ничего похожего в космосе не наблюдается,

Зеелигер сделал вывод, что количество небесных тел ограничено, а значит,

Вселенная не бесконечна.

Эти космологические парадоксы оставались неразрешенными до двадцатых

годов нашего столетия, когда на смену классической космологии пришла теория

конечной и расширяющейся Вселенной.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: