Конструкции космических аппаратов

Обратимся теперь к вопросам конструирования космических аппаратов. На рис.3 указаны основные конструктивные проблемы, возникающие при проектировании современных ракет-носителей и космических летательных аппаратов. К ним относятся: нагрузки, действующие на конструкцию, динамика и механика полета; разработка конструкций, выдерживающих большие тепловые нагрузки; защита от воздействия условий космического пространства, а также разработка новых конструкций и комбинаций материалов для применения в будущем.

Рис.3. Конструкции космических аппаратов.

Разработка конструкций космических аппаратов находится еще на ранней стадии развития и базируется на опыте конструирования самолетов и баллистических ракет. Из рис.4 следует, что большие современные ракеты-носители во многом родственны баллистическим ракетам. К отличительным особенностям их конфигураций следует отнести большое удлинение, снижающее сопротивление атмосферы, и большой объем, занимаемый топливом. Вес топлива может составлять от 85 до 90% стартового веса ракеты-носителя. Удельный вес конструкции очень мал, так что по существу это тонкостенная гибкая оболочка. При сегодняшней высокой стоимости единицы веса полезной нагрузки, выведенной на орбиту или траекторию полета к Луне и планетам, особо выгодно уменьшение веса основной конструкции до допустимого минимума. Еще более остро встают проблемы конструирования в случае использования в качестве топливных компонентов жидких водорода и кислорода, имеющих малый удельный вес, вследствие чего возникает потребность в больших объемах для размещения топлива.

Рис.4. Большие ракеты-носители.

Конструктор будущих ракет-носителей столкнется со многими новыми сложными проблемами. Ракеты-носители, по всей вероятности, будут больших размеров, станут сложней и дороже. Для многократного их использования без больших затрат на обратную доставку или ремонт потребуется решить важные задачи конструирования и технологии материалов.

Необычные требования, предъявляемые к разным типам космических аппаратов будущего, уже активизировали поиски новых типов конструкций и производственных процессов.

Требования защиты от опасностей, ожидающих нас в космическом пространстве, таких, как метеориты, жесткое и тепловое излучение, в значительной мере активизируют исследования, проводимые с целью создания конструкций космических аппаратов. Например, при длительном хранении жидкого водорода и других криогенных жидкостей в условиях космического пространства утечка компонентов топлива через дренажную систему и метеоритные пробоины в топливных баках должна быть практически исключена. Значительные успехи достигнуты в области разработки изоляционных материалов, обладающих исключительно малой теплопроводностью. Сейчас можно обеспечить хранение топлива в течение времени нахождения на стартовой площадке и нескольких оборотов вокруг Земли. Однако при длительном хранении в условиях космического пространства сроком до одного года возникает очень сложная проблема, связанная с притоком тепла через элементы конструкции баков и трубопроводы.

Другие проблемы космического полета, такие, как проблема складывающихся больших космических аппаратов или их частей в процессе вывода на орбиту с последующей их сборкой в космическом пространстве, также потребуют новых конструктивных решений. В то же время в течение космического полета на космический аппарат не воздействуют ни гравитационные, ни аэродинамические силы, что расширяет область возможных решений при проектировании. На фиг.5 показан пример необычного конструктивного решения, возможного только в условиях космического пространства. Это один из вариантов орбитального радиотелескопа, имеющего гораздо большие размеры, чем те, которые можно было бы обеспечить на Земле.

Такие устройства нужны для изучения естественного радиоизлучения звезд, галактик и других небесных объектов. Одна из полос радиочастот, представляющих интерес для астрономов, лежит в диапазоне от 10 Мгц и ниже. Радиоволны с такой частотой не проходят через земную ионосферу. Для приема низкочастотного радиоизлучения необходимы орбитальные антенны чрезвычайно больших размеров. В левой части фиг.5 показана кривая зависимости диаметра антенны от частоты принимаемого излучения. Видно, что с уменьшением частоты диаметр антенны увеличивается и для приема радиоволн с частотой менее 10 Мгц нужны антенны диаметром более 1,5 км.

Рис 5. Новые конструкции. Орбитальные антенны.

Антенну таких размеров нельзя вывести на орбиту, да и ее вес при использовании обычных принципов проектирования намного превысит возможности самых больших ракет-носителей. Даже с учетом отсутствия силы тяжести проектирование таких антенн представляет большие трудности. Например, если сделать рефлектор антенны сплошным из алюминиевой фольги толщиной всего 0,038 мм, то и тогда вес материала поверхности при диаметре антенны 1,6 км будет составлять 214 т. К счастью, благодаря малой частоте принимаемого радиоизлучения поверхность антенны можно сделать решетчатой. Последние достижения в области больших ажурных конструкций позволяют выполнить решетку из тонких нитей. При этом материал, образующий поверхность антенны, будет весить от 90 до 140 кг. Такая конструкция позволит вывести антенну на орбиту и затем собрать ее. Одновременно можно обеспечить плотную упаковку антенны вместе с системами стабилизации и энергообеспечения.

Жесткое излучение в космическом пространстве по-прежнему будет главным разрушительным фактором для запускаемых в космос аппаратов. Это разрушение связано отчасти с бомбардировкой космических аппаратов протонами больших энергий в радиационных поясах, а также с солнечными вспышками. Исследование эффектов, возникающих при такой бомбардировке, указывает на необходимость изучения сущности механизмов разрушения и определения характеристик материалов, используемых в качестве защитных экранов.

Рис.6. Новые принципы экранирования.
1 - сверхпроводящие катушки; 2 - магнитное поле; 3 - положительный заряд космического аппарата; 4 - поглощающий экран; 5 -плазменная защита.

Разработка новых способов защиты должна включать также исследование возможности экранирования с помощью сверхпроводящих магнитов, что позволит существенно снизить вес защитных устройств и тем самым увеличить полезную нагрузку космических аппаратов, предназначенных для длительных полетов.

На рис.6 иллюстрируется эта новая идея, получившая название плазменной защиты. Для отклонения заряженных частиц, таких, как протоны и электроны, используется комбинация магнитного и электростатического полей. Основой плазменной защиты является образуемое сравнительно легкими сверхпроводящими катушками магнитное поле, которое окружает весь аппарат. На тороидальных космических станциях экипаж и аппаратура располагаются в зоне малой напряженности магнитного поля. Космический аппарат заряжается положительно благодаря инжекции электронов в окружающее магнитное поле. Эти электроны несут отрицательный заряд, равный по величине положительному заряду космического аппарата. Несущие положительный заряд протоны из окружающего аппарат космического пространства будут отталкиваться положительным зарядом аппарата. Электроны, движущиеся в окружающем аппарат пространстве, могли бы разрядить электростатическое поле, однако этому препятствует магнитное поле, искривляющее их траектории.

Зависимость веса таких защитных систем от объема космического аппарата графически представлена в нижней части рис.6. Для сравнения приведены соответствующие веса защитного экрана, представляющего собой слой материала на пути излучения. Так как для управления движением потока электронов требуется магнитное поле весьма умеренной напряженности, то вес плазменной защиты в типичных случаях составит около 1/20 веса обычного поглощающего экрана.

Хотя идея плазменной защиты является многообещающей, с ее работой в условиях космического пространства связано еще много неясного. В связи с этим в настоящее время ведутся теоретические и экспериментальные исследования возможной неустойчивости электронного облака или взаимодействия с пылью и космической плазмой. Пока что не обнаружено никаких принципиальных трудностей, и можно надеяться, что космической радиации можно будет противопоставить плазменную защиту, весовые характеристики которой будут значительно лучше, чем у других типов защиты.

 


Вход в атмосферу

Обратимся теперь к проблеме входа космических аппаратов в атмосферу Земли и других планет. Основную трудность здесь, безусловно, представляет защита от тепловых потоков, возникающих в процессе входа в атмосферу. Колоссальная кинетическая энергия космического аппарата должна быть преобразована в другие виды энергии, в основном в механическую и тепловую, так как в противном случае аппарат либо сгорит, либо получит повреждения. Скорости входа космических аппаратов составляют от 7,6 до 18,3 км/сек. При меньших скоростях основную часть теплового потока составляет конвективный тепловой поток, однако при скоростях выше ~ 12,2 км/сек большую роль начинает играть тепловой поток излучения от головной ударной волны. Современные теплозащитные материалы эффективны до скоростей ~ 11 км/сек на аппаратах, имеющих малое аэродинамическое качество, однако при скоростях входа от 15,2 до 18,3 км/сек требуются новые материалы.

 

Рис.7 помогает понять, почему в будущем для решения задач входа в атмосферу пилотируемых космических кораблей большой интерес представят аппараты, способные развивать значительную подъемную силу. По оси ординат отложено отношение подъемной силы к силе лобового сопротивления L/D (аэродинамическое качество) при гиперзвуковых скоростях, а по оси абсцисс - скорость входа. Первые признаки тенденции увеличения аэродинамического качества видны на примере космических кораблей "Меркурий", "Джемини" и "Аполлон". Ожидается, что в будущем орбитальные полеты вокруг Земли достигнут высоты синхронных орбит. Корабли, входящие в земную атмосферу из этой области космического пространства, будут иметь скорости до 10,4 км/сек (на рис. 7 вертикальная линия с надписью "Синхронные орбиты").

Скорости входа пилотируемых космических кораблей, возвращающихся с других планет, например с Марса, гораздо больше. При надлежащем выборе времени старта и использовании притяжения Венеры они достигают 12,2 - 13,7 км/сек, в то время как при непосредственном возвращении с Марса скорости превышают 15,2 км/сек. Интерес к таким большим скоростям входа связан с большей гибкостью способа непосредственного возвращения с планеты.

Рис  7. Тенденции к увеличению аэродинамического качества космических кораблей и скорости входа в атмосферу Земли.

Для поддержания в разумных пределах перегрузок, испытываемых экипажем корабля при столь больших скоростях входа, необходимо увеличение аэродинамической подъемной силы по сравнению с кораблем "Аполлон". Кроме того, увеличение подъемной силы (правильней сказать, аэродинамического качества L/D) при больших скоростях расширит допустимые коридоры входа, которые для баллистических спускаемых аппаратов сужаются до нуля. С увеличением подъемной силы возрастает также точность маневрирования и приземления. Одна из важнейших фаз полета космических кораблей, обладающих подъемной силой, - заход на посадку и сама посадка. Летные характеристики космических аппаратов с подъемной силой на малых скоростях так сильно отличаются от характеристик обычных самолетов, что для их исследования пришлось построить два летательных аппарата, показанных на рис.8. Верхний аппарат имеет индекс HL-10, а нижний M2-F2.

Рис. 8. Летательные исследовательские аппараты HL-10 и M2-F2.

Эти аппараты предполагается поднимать на высоту около 14 км с помощью самолетов В-52 и сбрасывать при скоростях полета, соответствующих числу Маха до 0,8. На аппаратах HL-10 и M2-F2 установлены небольшие ракетные двигатели, работающие на перекиси водорода, которые позволяют моделировать переменное аэродинамическое качество. С помощью этих двигателей можно варьировать угол наклона траектории при заходе на посадку, а также запас статической устойчивости, чтобы определить оптимальные летные характеристики будущих пилотируемых космических кораблей аналогичной конфигурации. Корабли такой формы будут иметь вес, близкий к весу космических кораблей будущего. И уже создан корабль похожий на данные модели космических кораблей, это орбитальный космический корабль «Шаттл».


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: