Процесс стружкообразования

Стружкообразование в значительной степени определяет процесс резания и его результаты. От процесса стружкообразования зависят сила резания, расход энергии, количество выделяющейся теплоты, точность и качество обработки, условия работы инструмента и станка. Характер образования стружки и её типы во многом определяются свойствами обрабатываемого материала. Характерная особенность процесса резания в том, что стружка образуется в процессе преодоления упругих деформаций (для стеклопластика в этом случае область пластических деформаций практически отсутствует). Обработанный материал, упруго сжатый во время резания, затем упруго восстанавливается.

В первоначальный момент внедрения инструмента происходит сжатие материала изделия, что приводит к сжатию контактных слоёв и увеличению площади соприкосновения с инструментом. При дальнейшем увеличении нагрузки сначала происходит хрупкое разрушение полимерной матрицы с образованием опережающей трещины. Появляется зона сдвига, являющаяся условно плоскостью скалывания. Одновременно происходит как нарушение адгезионных связей между волокнами армирующего материала и полимерной матрицей, так и разрушение (разрыв) волокон. Образуется элемент стружки, который перемещается вдоль плоскости сдвига, чему способствует непрерывное перемещение инструмента.

 В процессе смещения элемента стружки происходит дальнейшее сжатие материала и образование нового элемента стружки, который отделяется в тот момент, когда сила, действующая на резец, превысит силы внутреннего сцепления. Если адгезионная связь между волокнистым материалом и полимерной матрицей васока, то получается сливная стружка. При недостаточной адгезии образуется элементная стружка или стружка надлома. Увеличение степени износа инструмента приводит к сильному измельчению стружки, появлению большого числа пылевидных частиц. В целом, разрушение армированных полимерных материалов можно считать как упругое.

Схема армирования также влияет на процесс стружкообразования. Если угол намотки совпадает с траекторией вершины резца, то развивается опережающая трещина вдоль траектории, а резец скользит вдоль поверхности волокна, не разрушая его. Если угол армирования не совпадает с траекторией резания, тогда опережающая трещина развивается в направлении армирования и образуется стружка надлома. Таким образом, механизм стружкообразования при резании можно представить следующим образом. Под действием механических напряжений в зоне наибольших касательных напряжений (ее принимают за условную плоскость сдвига) протекают периодические сдвиговые явления, приводящие к упругому разрушению обрабатываемого материала и формированию, в зависимости от условий обработки и схемы армирования материала, стружки того или иного типа [12].

Вблизи вершины резца обрабатываемый материал испытывает деформации растяжения, перпендикулярные к направлению резания, и деформации сжатия, направленные вдоль резания. Максимальные напряжения сжатия наблюдаются у вершины резца. Особенность обработки армированного пластика – наличие существенного слоя сжатия, находящегося ниже линии среза, что приводит к его упругому восстановлению. Это является причиной погрешности размеров.

Частички разрушенного материала (стеклянные волокна), смешанные с частичками затвердевшего связующего, рассеиваются в воздухе и загрязняют его. При механической обработке стеклопластик подвергается и тепловому воздействию. При этом происходят химические превращения, которые сопровождаются выделением различных низкомолекулярных соединений. Кроме того, образование пылевоздушной смеси в производственном помещении может привести к взрыву. Опасность возникновения взрыва весьма велика, т.к. при обработке стеклопластика без использования смазочно-охлаждающих жидкостей на поверхности изделия возникает потенциал электростатических зарядов от 2,5 до 10 кВ, разряд которого может вызвать искру.

Поэтому нельзя допускать отложение слоев пыли на оборудовании, полах, стенах. В качестве дополнительных мер по снижению распространения пыли и стружки устанавливаются средства улавливания пыли в зоне резания, ограждение зоны резания, местные вентиляционные устройства.

ВЦНИИОТом разработано пневматическое устройство непрерывного удаления элементной стружки и частиц пыли непосредственно от режущей части инструмента. Особенностью устройства является то, что пылестружкоприемное устройство тесно связано с резцедержавкой и составляет ее неотъемлемую часть. Основными частями пневматической системы являются резец-пылестружкоприемник (Рисунок 3.1) и вентиляционная установка. Резец-пылестружкоприемник представляет собой державку, выполненную за одно целое с пылестружкоприемником. Расстояние от входного сечения пылестружкоприемника до режущей кромки не должно превышать 8 мм.

 

Рисунок 3.1 – Схема резца с пылестружкоприемником

 

Вентиляционная установка, предназначенная для создания всасывающего воздушного потока во входном сечении резца-пылестружкоприемника, способствует улавливанию стружки и пыли в пылестружкоприемник и обеспечивает непрерывное удаление и транспортировку их в стружкосборник. Производительность вентиляционной установки, рассчитанной на одни станок должна составлять порядка 800 м3/ч [10].



Тепловые явления

В отличие от металлов, армированные стеклопластики обладают низкой теплостойкостью. При температурах выше 300-350ºС начинаются интенсивная термодеструкция и разложение полимерного связующего. Это приводит к резкому ухудшению свойств материала, появлению прижогов и большого по величине дефектного слоя. Поэтому обработку армированных пластиков следует вести при таких режимах, чтобы температура не превышала 300ºС.

Теплота, образующаяся при резании, является результатом работы деформаций, трения стружки и обрабатываемого изделия о переднюю и заднюю поверхность инструмента, механических превращений полимера, разрушения волокон.

 

Рисунок 3.2 – Схема движения тепловых потоков

 

Выделяющаяся в зоне резания теплота расходуется (Рисунок 3.2) между инструментом, стружкой, обрабатываемой деталью и средой, причём отвод теплоты в окружающую среду весьма мал и им можно пренебречь, тогда

 

                                                                 (3.1),

где QC, QИ и QД – количество теплоты, отводимое соответственно в стружку, инструмент и детальКонцентрация теплоты в инструменте приводит к значительному повышению температуры на его режущих кромках, что нельзя не учитывать при выборе инструментального материала и оценке интенсивности изнашивания резцов. Соотношение составляющих расходной части теплового баланса в среднем составляет: QC ≈ 5%; QИ ≈ 90% и QД ≈ 5%.

С увеличением времени работы и нарастанием износа температура в зоне резания главным образом на режущих кромках инструмента возрастает и может достигать 600ºС [12].

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: