З прикладами інтервальних оцінок, що мають місце тільки при великих об'ємах вибірок, ми вже зштовхувалися. Так, якщо розподіл випадкового розміру X відмінно від нормального, але п велике, то з імовірністю ≈ 1 - а інтервальна оцінка для MX = а має вид нерівності (3.2.3); з імовірністю ≈ 1-а інтервальна оцінка для р при великих п має вид нерівності (3.2.6) і т. д. [див. нерівності (3.2.9), (3.2.23)].
Розглянемо асимптотичний підхід у загальному випадку.
Раніше було встановлено, що при виконанні досить широких умов оцінка
параметра
, отримана або методом моментів або методом максимальної правдоподібності, має в самому загальному випадку асимптотичний нормальний розподіл і асимптотично несумісної, тобто при великих п оцінка
. Однак на відміну від ситуації, розглянутої на раніше, де дисперсія D
оцінки
передбачалася відомої, у загальному випадку дисперсія D
оцінки
залежить від оцінюваного невідомого параметра θ:
(3.2.24)
Тому напряму перший підхід до довірчого інтервалу неприйнятий.
Порушимо питання так: не можна чи перетворити оцінку
у g – g(
) це невідомий параметр
у g= g (θ) так, щоб дисперсія D
не залежала від θ. Викладемо схему добору такого перетворення, а потім пояснимо, як, використовуючи його, знайти інтервальну оцінку для θ.
Нехай θ — оцінка методу моментів: θ, а отже, і g = g(θ) є функціями вибіркових моментів. Тоді, відповідно до теореми про властивості функцій вибіркових моментів (див. 3.1), розподіл оцінки
при великих п близько до нормального,
і, з обліком виражень (3.5) і (3.2.25),

(аналогічні вираження утворюються і для оцінок максимальної правдоподібності в регулярному випадку). Але тому що дисперсія D
не повинна залежати від θ, то вираження c(θ) g'(θ) повинно бути постійним, наприклад, c(θ)g'(θ) = 1. Тоді g'(θ) = 1/ c(θ) і
(3.2.25)
при цьому довільна постійна в невизначеному інтегралі вибирається з розумінь простоти остаточних виражень.
Отже, при великих п розподіл оцінки
близько до нормального, при цьому
, a
і, отже,

Тому при великих п для g(9) з імовірністю * I — а має місце нерівність, подібна нерівності (3.2.3):
(3.2.26)
Застосувавши до всіх частинам нерівності (3.2.26) перетворений не
, що є зворотною функцією до функції g, одержимо інтервальну оцінку для θ.
Приклад 3.2.5 Побудуємо довірчий інтервал для параметра розподілення Пуассона: Р(Х = х) =
л.
У прикладі 3.2.2 була знайдена оцінка методу моментів
параметра
;
будучи оцінкою методу моментів, має асимптотично нормальний розподіл (ця властивість оцінки
випливає також і з центральної граничної теореми), при цьому
- оцінка, тому що
, а дисперсія оцінки
, залежить від параметра λ:

Зіставивши вираження для
с вираженням (3.2.24), одержимо

і, відповідно до рівності (3.2.25),

З урахуванням виду функції
нерівність (3.2.26)
(3.2.27)
Для функції
при х ≥ 0 і у ≥ 0 зворотна функція
. Тому, якщо в нерівності (3.2.27)

то, застосувавши до всіх його частинам перетворення
одержимо нерівність
(3.2.28)
яке виконується при великих п з імовірністю ≈1 - α.
Приклад 3.2.6 Побудуємо довірчий інтервал для р - імовірності успіху в одиничному випробуванні.
У прикладі 3.2.4 методом максимальної правдоподібності для р була знайдена оцінка
, де
- випадкове число успіхів у п випробуваннях Бернуллі; р має асимптотичний нормальний розподіл, при цьому М
= р, a D
= р(1 – р)/п - дисперсія залежить від параметра р.
Зіставивши вираження для D
із вираженням (3.2.24), одержимо
і, відповідно до формули (3.2.25),

З обліком виду функції g(p) нерівність (3.2.26) прийме вид:
(3.2.29)
Для функції
при 0 <
< 1 зворотна функція
, де 0 < у < π. Тому, якщо в нерівності (3.2.29)
та
, то застосувавши до всіх його частинам перетворення
одержимо нерівність;

який виконується при великих п зімовірністю ≈1 - α.
Розподіл Пуассона
Нехай виробляється п незалежних іспитів, у кожнім з який імовірність появи події А дорівнює р. Для визначення імовірності k появ події в цих іспитах використовують формулу Бернуллі. Якщо ж п велико, то користаються асимптотичною формулою Лапласа. Однак, ця формула непридатна, якщо імовірність події мала (р≤0,1). У цих випадках (п велико, р мало) прибігають до асимптотичною формулою Пуассона.
Отже, поставимо своєю задачею знайти імовірність того, що при дуже великому числі іспитів, у кожнім з який імовірність події дуже мала, подія наступить рівно k раз.
Зробимо важливе допущення: добуток пр зберігає постійне значення, а саме і пр =λ. Як буде випливати з подальшого це означає, що середнє число появ події в різних серіях іспитів, тобто при різних значеннях п, залишається незмінним. Скористаємося формулою Бернуллі для обчислення цікавлячої нас імовірності:

Тому що пр =λ те
Отже,

Прийнявши в увагу, що п має дуже велике значення, замість
знайдемо
. При цьому буде знайдене лише наближене значення імовірності, що відшукується: хоча і велико, але звичайно, а при відшуканні межі ми спрямуємо п д о нескінченності. Отже,

Отже (для простоти запису знак наближеної рівності опущений),

Ця формула виражає закон розподілу Пуассона імовірностей масових (п велике) рідких (р мале) подій.
Зауваження. Маються спеціальні таблиці користаючись якими можна з найти Pn(k). знаючи k і λ.
Висновок
У цій курсовій роботі ми розглянули апарат теорії ймовірностей і математичної статистики який використовується для аналізу динаміки об’ємів банківських депозитів. Цей апарат використовується у багатьох банківських системах та різних за призначенням галузях країн в тому числі і нашої країни.
Отже, предметом теорії ймовірностей є вивчення імовірнісних закономірностей масових однорідних випадкових подій. Знання закономірностей, яким підкоряються масові випадкові події, дозволяє передбачати, як ці події будуть протікати. Методи теорії ймовірностей широко застосовуються в різних галузях природознавства і техніки: у теорії надійності, теорії масового обслуговування, у теоретичній фізиці, геодезії, астрономії, теорії стрілянини, теорії помилок спостережень, теорії автоматичного керування, загальної теорії зв’язку й у багатьох інших теоретичних і прикладних науках. Теорія ймовірностей служить, також для обґрунтування математичної і прикладної статистики, що, у свою чергу, використовується при плануванні й організації виробництва, при аналізу технологічних процесів, попереджувальному і приємному контролі якості продукції та для багатьох інших цілей.
В останні роки методи теорії ймовірностей все ширше і ширше проникають в різні області науки і техніки, сприяючи їх прогресу.
Список літератури
1. Колемаев В.А. Математическая экономика.- М: ЮНИТИ. 1998.
2. Замков О.О., Толстопятенко А.В.. Черемніх Ю.Н. Математические методи в экономике.- М.: ДИС. 1997.
3. Грубер И. Эконометрия.- Киев.: Изд. Астарта. 1996.
4. Колемаев В.А. и др. Теория вероятностей и математическая статистика. - М.: Вісш. шк.. 1991.-400 с. 09. Толбатов Ю.А. Математична статистика та задачі оптимізації в алгоритмах і програмах. - Київ, 1991.
5. Венцель Е.С.. Овчаров Л.Н. ТВ и ее инженерное приложение. - М.: Наука. 1988.
6. Розанов Ю.А. Теория вероятностей, случайні процесси математическая статистика. - М.: Наука. 1985. 22. Айвазян С.А. и др. Прикладная статистика: Основи моделирования и первичная обработка даних. -М.: Финанси и статистика. 198?.-471 с.
7. Айвазян С.А. и др. Прикладная статистика: Исследование зависимостей. — М.: Финансі и статистика. 1985. -487 с.
8. Айвазян С.А. и др. Прикладная статистика: Классификация и снижение размерности. - М.: Финансі и статистика. 1989. - 607 с.
9. Малахин В.И. Математическое моделирование экономики.-М.. 1998.
10. Красе М.С. Математика для экономических специальностей.- М.: ИНФРА-М. 1999.
11. Ляшенко И.Н.. Ляшенко Е.И. Математика для экономистов.- Донецк. 1998.
12. Сакович В.А. Исследование операций (детерминированніе методі и - модели) Справочное пособие.-Мн.: Віш.шк.. 1984.-254 с.
13. Зайченко Ю.П. Исследование операций.-К: Виша.шк.. 1988.
14. Вентцель Е.С. Исследование операций. Задачи, принципі, методология.-М.: Наука, 1980-208 с.






