Определение тенденций динамики ввода в действие жилья и среднемесячной заработной платы

Сглаживание с помощью скользящих средних

Скользящая средняя позволяет сгладить колебания отдельных уровней динамического ряда и довольно отчётливо выявить тенденцию развития показателей. Этот метод является эмпирическим приёмом предварительного анализа.

 

Таблица 1.5.Расчёт скользящих средних ввода в действие жилья за 2006-2010 гг., м2

Годы Ввод в действие жилья, м2 Скользящая сумма Скользящая средняя
2006 5958,2 - -
2007 5841,5 14890,18 4963,393
2008 3090,6 15572,69 5190,897
2009 6640,7 14920,4 4973,467
2010 5189,2 - -

 


Вывод: анализируя предварительные данные по скользящим средним показателей ввода в действие жилья можно сделать предварительные выводы о том, что эти показатели подчиняются уравнению параболы.

 

Таблица 1.6. Расчёт скользящих средних среднемесячной заработной платы за 2006 - 2010 гг., грн.

Годы Среднемесячная заработная плата, грн. Скользящая сумма Скользящая средняя
2006 287,59 - -
2007 308,43 900,28 300,0933
2008 304,26 845,06 281,6867
2009 232,37 819,01 273,0033
2010 282,38 - -

 

Вывод: анализируя предварительные данные по скользящим средним показателей среднемесячной заработной платы можно сделать предварительные выводы о том, что эти показатели подчиняются уравнению прямой, при чем заметна тенденция к понижению.

Метод аналитического выравнивания

Для того чтобы представить количественную модель, выражающую общую тенденцию изменений уровней динамического ряда во времени, используется аналитическое выравнивание ряда динамики. В этом случае фактические уровни заменяются уровнями, вычисленными на основе определённой кривой. Предполагается, что она отражает общую тенденцию изменения во времени изучаемого показателя. При этом выравнивании динамического ряда закономерно изменяющийся уровень изучаемого показателя оценивается как функция времени: Yt = f(t). Выбор формы кривой во многом определяет результаты экстраполяции тренда, поэтому основная задача этого метода состоит в выборе аналитического уравнения, которое наилучшим образом будет описывать тенденцию динамики изучаемых показателей.

Рассмотрим аналитическое выравнивание ряда динамики по прямой, которая описывается уравнением вида:

 

 (1.13)

 

Для вычисления параметров тренда воспользуемся методом наименьших квадратов. Оптимизация данного метода состоит в минимизации суммы квадратов отклонений фактических уровней ряда от выровненных уровней. Для каждого типа тренда МНК даёт систему нормальных уравнений, разрешив которую вычисляются параметры тренда.

Разрешающая система нормальных уравнений метода аналитического выравнивания по прямой имеет вид:

 

 , ()

 

Аналитическое выравнивание ряда динамики по параболе описывается уравнением вида:

 

 (1.14)

 

Разрешающая система нормальных уравнений метода аналитического выравнивания по параболе имеет вид:

, ()

 , где b0, b1 и b2 - параметры уравнений

Таблица №1.7 Аналитическое выравнивание ввода в действие жилья по прямой

годы

Ввод в действие жилья, м2

ti

Yiti

Ti 2

Yt

yi-yt

(yi-yt) 2

2006

5958,2

-2

-11916,3

4

5491,758

466,442

217568,1

2007

5841,5

-1

-5841,45

1

5417,88

423,62

179453,9

2008

3090,6

0

0

0

5344,002

-2253,4

5077821

2009

6640,7

1

6640,67

1

5270,124

1370,576

1878479

2010

5189,2

2

10378,32

4

5196,246

-7,046

49,64612

Итого

26720,01

0

-738,78

10

26720

0,19

7353371

 

Значение параметров уравнения прямой рассчитывается следующим образом:

 

 b0=(Syi)/n= 26720,01/5 = 5344,002

,

 

Для данного уравнения b0 – показатель среднего уровня динамического ряда, т.к. вычислительная формула этого параметра совпадает с формулой простой арифметической. b1 – линейный коэффициент регрессии, показывающий направление тренда, в данном случае b1  показывает тенденцию снижения уровней динамического ряда, что видно визуально из таблицы 1.7.

Таким образом, уравнение прямой имеет вид:

 

 

Таблица 1.8 Аналитическое выравнивание ввода в действие жилья по параболе

годы

Ввод в действие жилья, м2

ti

Yi*ti

Ti2

yi*ti2

Ti4

Yt

Yi - Yt

(yi-yt)2

2006

5958,2

-2

-11916,3

4

23832,8

16

6010,592

-52,392

2744,922

2007

5841,5

-1

-5841,45

1

5841,5

1

5158,473

683,027

466525,9

2008

3090,6

0

0

0

0

0

4825,18

-1734,58

3008768

2009

6640,7

1

6640,67

1

6640,7

1

5010,713

1629,987

2656858

2010

5189,2

2

10378,32

4

20756,8

16

5715,072

-525,872

276541,4

Итого

26720,01

0

-738,78

10

57071,8

34

26720,03

0

6411438

 

Значение параметров уравнения параболы рассчитываются следующим образом:

, ,

 

 

5 b0 = 26720,01– 10 b 2 b 2 = 259,413

57071,8 = 2(26720,01 – 10 b 2) + 34 b 2  ,

 

Таким образом,  ,  ,

Уравнение параболы имеет вид:

 

 

Так как основной целью аналитического выравнивания является экстраполяция, следовательно, требуется выяснить какое из уравнений прямой или параболы – лучше описывает тенденцию динамики среднесписочной численности работников, для этого рассчитаем среднюю квадратическую ошибку уравнения тренда и коэффициент вариации:

 

 , (1.15)

где n – число уровней ряда, m – число параметров в уравнении тренда (для прямой m=2),  - соответственно фактическое и расчётное значения уровней динамического ряда.

 

 

 

где - средний уровень динамического ряда. (1.16)

Для уравнения прямой:

n = 5, m = 2

 

 

Для уравнения параболы:

 

n = 5, m = 3

 

 

Поскольку коэффициент вариации для уравнения параболы больше, чем для уравнения прямой, то уравнение прямой более точно описывает основную тенденцию динамики ввода в действие жилья.

Аналогичные расчеты аналитического выравнивания по уравнению прямой и параболы для среднемесячной заработной платы представлены в таблицах 1.9, 1.10

Таблица 1.9 Аналитическое выравнивание среднемесячной заработной платы по прямой

годы

Среднемесячная заработная плата, грн

ti

Yi*ti

ti^2

Yt

yi-yt

(yi-yt)^2

2006

287,59

-2

-575,18

4

300,302

-12,712

161,595

2007

308,43

-1

-308,43

1

291,654

16,776

281,434

2008

304,26

0

0

0

283,006

21,254

451,733

2009

232,37

1

232,37

1

274,358

-41,988

1762,99

2010

282,38

2

564,76

4

265,71

16,67

277,889

Итого

1415,03

0

-86,48

10

1415,03

0

2935,64

 

Таблица 1.10 Аналитическое выравнивание среднемесячной заработной платы по параболе

годы

Среднемесячная заработная плата, грн

ti

Yi*ti

ti^2

yi*ti^2

Ti^4

Yt

yi-yt

(yi-yt)^2

2006

287,59

-2

-575,18

4

1150,36

16

289,299

-1,709

2,920681

2007

308,43

-1

-308,43

1

308,43

1

297,158

11,272

127,058

2008

304,26

0

0

0

0

0

294,011

10,249

105,042

2009

232,37

1

232,37

1

232,37

1

279,858

-47,48

2255,11

2010

282,38

2

564,76

4

1129,52

16

254,699

27,681

766,2378

Итого

1415,03

0

- 86,48

10

2820,68

34

1415,03

0

3256,369

 

Значение параметров уравнения прямой для среднемесячной заработной платы рассчитываются аналогично вводу в действие жилья:

 

b0  

 

Линейный коэффициент регрессии меньше нуля, поэтому, как и дляввода в действие жилья, наблюдается тенденция снижения уровней динамического ряда среднемесячной заработной платы.

Уравнение прямой имеет вид:

Аналогичным способом найдем значения параметров уравнения параболы:

<0

, ,


 

Таким образом, b0 = 294,011, b1 = - 8,65, b2 = -5,503

 

Уравнение параболы имеет вид:

 

Так как основной целью аналитического выравнивания является экстраполяция, следовательно, требуется выяснить какое из уравнений прямой или параболы лучше описывает тенденцию динамики ввода в действие жилья, для этого рассчитаем среднюю квадратическую ошибку уравнения тренда и коэффициент вариации:

Для уравнения прямой:

 

 

Для уравнения параболы:

 

 

 

Поскольку коэффициент вариации для уравнения параболы больше, чем для уравнения прямой, то уравнение прямой более точно описывает основную тенденцию динамики среднемесячной заработной платы.






double arrow
Сейчас читают про: