Раздел 2. Определение взаимосвязей и взаимозависимостей между экономическими показателями

2.1 Характеристика и экономический анализ показателей

 

Современная наука исходит из взаимосвязи всех явлений в природе и обществе. Объём продукции предприятия связан с численностью работников, мощностью двигателей, стоимостью производственных фондов и ещё многими признаками.

Невозможно управлять явлениями, предсказать их развитие без изучения характера, силы и других особенностей связи. Поэтому методы исследования, измерения связей составляют чрезвычайно важную часть методологии научного исследования, в том числе и статистического.

Корреляционная связь между признаками может возникать разными путями. Важнейший путь – причинная зависимость результативного признака (его вариации) от вариации факторного признака.

В данном разделе будут рассмотрены такие показатели работы предприятий строительной отрасли как ввод в действие жилья, продуктивность работы 1чел. В ценах текущего года и себестоимость.

Экономический смысл таких категорий как численность работников, ввод в действие жилья и себестоимость были рассмотрены в первом разделе в пункте 1.1.

В данном случае себестоимость является результативным признаком. Ввод в действие жилья – первичным факторным признаком. Продуктивность работы 1 чел. в ценах текущего года - вторичным факторным признаком.

Далее будут выявлены зависимости между показателями с помощью методов сравнения параллельных рядов и аналитических группировок, а также с помощью корреляционно-регрессионного анализа. Оценка силы связи будет определена с помощью корреляционного отношения и коэффициента Пирсона. Существенность коэффициентов регрессии будет проверена с помощью коэффициентов эластичности, критериев Стьюдента и Фишера.

 

2.2 Установление наличия и характера взаимосвязи между признаками

Таблица 2.1. Исходные данные

Ввод в действие жилья м2 Продуктивность работы 1 чел. в ценах текущего года Себестоимость, тыс.грн.
Х V У
1 5958,2 14774,52 4969,30
2 5841,5 14569,24 5063,08
3 3090,6 11856,92 5093,30
4 6640,7 13171,92 5256,89
5 5189,2 13217,77 5138,10

 

Наличие и характер взаимосвязи можно определить при помощи двух методов: сравнения параллельных рядов и аналитических группировок.

 

Сравнение параллельных рядов позволяет сделать вывод о наличии достаточно сильной обратной связи в первой паре сравниваемых признаков, в данном случае ярко прослеживается по всей совокупности, что увеличение численности работников ведёт к снижению себестоимости. В остальных парах сравниваемых признаков достаточно сложно определить направление связи, можно предположить, что в третьей паре сравниваемых признаков прослеживается прямая связь.

Воспользуемся методом аналитических группировок, который благодаря группировке и усреднению величин результативного признака позволит более чётко увидеть связь сравниваемых признаков.

Сгруппируем данные в 3 группы:

 

 (2.1)

 

 

Таблица 2.3Аналитические группировки

Группы по первичному факторному признаку (Х)

Среднее значение результативного признака в группе (у)
3090,6 – 4273,97   5093,30
4273,97 – 5457,34   5138,10
5457,34 – 6640,71   5096,42

 

Группы по вторичному факторному признаку (V)

Среднее значение результативного признака в группе (у)
11856,92 – 12829,45   5093,30
12829,45 – 13801,98   5197,49
13801,98 – 14774,52   5016,19

 

Группы по первичному факторному признаку (Х)

Среднее значение в группе другого факторного признака (V)
3090,6 – 4273,97   11856,92
4273,97 – 5457,34   13217,77
5457,34 – 6640,71   14138,23

 

Вывод: Метод аналитических группировок показал, что в первых двух парах признаков существует обратная связь (с ростом факторного признака происходит уменьшение результативного признака), которая может быть выражена уравнением параболы. В последней паре признаков наблюдается прямая связь, поэтому она может быть выражена уравнением прямой.

 

2.3 Построение корреляционных уравнений

 

Уравнение параболы имеет вид:


 (2.2)

 

Применяя метод наименьших квадратов, получим разрешающую систему уравнений:

 

 

Нахождение параметров уравнения парной корреляции для связи между Х и Y для уравнения прямой

x

y

xy

x^2

y(x)

y-y(x)

(y-y(x))^2

1

3090,6

5093,3

15741353

9551808,4

5069,46

23,8423

568,454

2

5189,2

5138,1

26662629

26927797

5101,75

36,3487

1321,23

3

5841,5

5063,1

29575982

34123122

5111,79

-48,689

2370,62

4

5958,2

4969,3

29608083

35500147

5113,58

-144,28

20818,1

5

6640,7

5256,9

34909429

44098896

5124,09

132,813

17639,2

Итог

26720,2

25520,67

136497476

150201770

25520,7

0

42717,6

 

 

Решив систему матричным методом, находим:

 

= 5021,8991

 = 0,01538815

 

Отсюда, уравнение прямой имеет вид: yx = 5018,47+0,02 x

Таблица 2.5. Нахождение параметров уравнения парной корреляции для связи между X и Y по параболе

x

y

x*y

x^2

x2*y

x^3

x^4

y(x)

1

3090,6

5093,3

15741353

9551808,4

48650225724

29520818917

91237042946166

4728,821611

2

5189,2

5138,1

26662629

26927797

138355020986

13971756626

725106231885195

3978,723378

3

5841,5

5063,1

29575982

34123122

172765366686

199279038321

1164387472088440

3745,573146

4

5958,2

4969,3

29608083

35500147

211516975855,4

211495677912

1260260454061680

3703,861308

5

6640,7

5256,9

34909429

44098896

23182789672

292754944000

194471267135730

3459,916752

Σ

26720,2

25520,67

136497476

150201770

754465259799,4

843247226502

5185703872617220

25520,67

 

Y-Y(x) (Y-Y(x))^2
364,4783888 132844,4959
1159,376622 1344154,151
-1317,526854 1735877,011
1265,438692 1601335,084
-1796,983248 3229148,792
0 8043359,534

 

 

 

Решив систему методом обратной матрицы, находим:

= 5833,488341, = -0,357426816 =0

 

Следовательно, уравнение параболы имеет вид:

 

Чтобы узнать, какое из уравнений – параболы или прямой – лучше описывает корреляционную связь, рассчитаем среднюю квадратическую ошибку:

Для прямой:

а также коэффициент вариации:

Для параболы:

 

 и

 

Так как коэффициент вариации для уравнения прямой меньше, чем для уравнения параболы, уравнение прямой более точно описывает корреляционную связь между поизводительностью труда 1 работника и рентабельности.

Таблица 2.6. Нахождение параметров уравнения парной корреляции для связи между V и Y для уравнения прямой

v

y

v^2

v*y

y(v)

y-y(v)

(y-y(v))^2

1

11857

5093,3

140586552

60390850,6

5218,623

-125,3232

15705,90446

2

13172

5256,9

173499476

69243334,5

5166,023

90,8668

8256,775342

3

13218

5138,1

174709444

67914224

5164,189

-26,0892

680,6463566

4

14569

5063,1

212262754

73765227,7

5110,13

-47,0504

2213,74014

5

14775

4969,3

218286441

73419022,2

5101,919

-132,6192

17587,85221

Итого

67590,37

25520,67

919344668

344732659

25520,67

0

44444,9

 


Решив систему матричным методом, находим:

 

= 5692.89

 = -0.04

 

Отсюда, уравнение прямой имеет вид:

 

Таблица 2.7. Нахождение параметров уравнения парной корреляции для связи между V и Y по параболе

v

y

v*y

v^2

v^2y

v^3

v^4

y(v)

1

11857

5093,3

60390850,6

140586552

716049485302

1666957239793

19765111992225600

5188,935877

2

13172

5256,9

69243334,5

173499476

912069395384

2285362864448

30102799650509100

5122,197135

3

13218

5138,1

67914224

174709444

897674594216

2309389796232

30525514326594600

5119,862547

4

14569

5063,1

73765227,7

212262754

1074707549777

3092354182009

45052508077689100

5051,296737

5

14775

4969,3

73419022,2

218286441

1084730811261

3225391734375

47655162875390600

5040,841846

Итог

67590,37

25520,67

344732659

919344668

4685231835941

12579455816857

173101096922409000

25520,67

y-y(v)

(y-y(v))^2

-95,6358768

9146,220948

134,7028654

18144,86194

18,23745257

332,6046763

11,80326308

139,3170193

-71,5418465

5118,2358

0

32881,24039

                   

 

Решив систему методом обратной матрицы, находим:

 

=5790,701099 a1= -0,050751895, a2= 0

 

Следовательно, уравнение параболы имеет вид:

 

 

Чтобы узнать, какое из уравнений – прямой или параболы – лучше описывает корреляционную связь, рассчитаем:

Для прямой:

 

 

а также коэффициент вариации:

 

 

Для параболы:

 

 и

Так как коэффициент вариации для уравнения прямой меньше, чем для уравнения параболы, уравнение прямой более точно описывает корреляционную связь между выручкой и рентабельностью.

Таблица 2.8. Нахождение параметров уравнения парной корреляции для связи между X и V по прямой

x

v

x*v

x^2

v(x)

v-v(x)

(v-v(x))^2

1

3090,6

11856,92

36644996,95

9551808,36

12107,98058

-251,0605779

63031,4138

2

5189,2

13217,77

68589652,08

26927796,64

13421,18264

-203,4126404

41376,70226

3

5841,5

14569,24

85106215,46

34123122,25

13829,36033

739,8796672

547421,922

4

5958,2

14774,52

88029545,06

35500147,24

13902,38553

872,1344691

760618,5323

5

6640,7

13171,92

87470769,14

44098896,49

14329,46092

-1157,540918

1339900,977

Итог

26720,2

67590,4

365841179

150201771

67590,37

0,00

2752349,547

 

 

Решив систему методом обратной матрицы, находим:

 

= 10174,03; =0,625751

 

Следовательно, уравнение прямой имеет вид:

 

 

Таблица 2.9. Нахождение параметров уравнения парной корреляции для связи между Х и V по параболе

x

v

x*v

x^2

x^2v

x^3

x^4

v(x)

1

3090,6

11856,92

36644996,95

9551808,36

113255027579,9

29520818917,4

91237042946165,9

11688,07134

2

5189,2

13217,77

68589652,08

26927796,64

355925422594,3

139733722324,3

725106231885195,0

14080,87648

3

5841,5

14569,24

85106215,46

34123122,25

497147957609,6

199330218623,4

1164387472088440,0

14113,05705

4

5958,2

14774,52

88029545,06

35500147,24

524497635400,3

211516977285,4

1260260454061680,0

14084,71225

5

6640,7

13171,92

87470769,14

44098896,49

580867136654,6

292847541921,1

1944712671635730,0

13711,67003

Σ

26720,2

67590,4

365841179

150201771

2071693179838,6

872949279071,6

5185703872617220,0

67590,38714

v-v(x)

(v-v(x))^2

168,84866

28509,87

-863,10648

744952,79

456,18296

208102,89

689,80775

475834,73

-539,75003

291330,1

0

1748730,4

 

 

Решив систему методом обратной матрицы, находим:

 

= 2306,042255; = 4,24, = -0,00038.

 

Следовательно, уравнение прямой имеет вид:

 

 

Среднее значение выручки за вычетом НДС: .

Чтобы узнать, какое из уравнений – прямой или параболы – лучше описывает корреляционную связь между производительностью труда 1 работника и рентабельностью, рассчитаем:

Для прямой:

а также коэффициент вариации:

Для параболы:  и

 

Так как коэффициент вариации для уравнения параболы меньше, чем для уравнения прямой, уравнение параболы более точно описывает корреляционную связь.

2.4 Оценка силы корреляции

 

Корреляционное отношение: , (2.4)

 

где  (2.5)- дисперсия результативного признака у, величина которого объясняется связью с фактором х (факторная дисперсия). Она вычисляется по индивидуальным данным, полученным для каждой единицы совокупности на основе уравнения регрессии;

 

 (2.6) – общая дисперсия результативного признака, выражающая влияние на него всех причин и условий.

 

Чем ближе значение корреляционного отношения к 1, тем теснее связь между признаками.

Таблица 2.7 Вспомогательная таблица для расчёта дисперсий для связи X и Y

Y

Y(X)

(Y-Yср)^2

(Y(X)-Yср)^2

1

5093,3

5069,46

117,5056

1202,7024

2

5138,1

5101,75

1153,2816

5,7121

3

5063,1

5111,79

1684,2816

58,5225

4

4969,3

5113,58

18181,8256

89,1136

5

5256,9

5124,09

23335,6176

398,0025

Итого

25520,67

25520,7

44472,512

1754,0531

Среднее

5104,14

 

 

 

Поскольку величина корреляционного отношения находится в интервале , значит, связь между признаками X и Y - слабая. Таким образом, вариация результативного признака у обусловлена не только действием фактора х, но и другими причинами и факторами.

 

Таблица 2.8Вспомогательная таблица для расчёта дисперсий для связи V и Y

Y

Y(V)

(Y-Yср)^2

(Y(V)-Yср)^2

1

5093,3

5218,623

117,5056

13106,35729

2

5256,9

5166,023

23335,6176

3829,505689

3

5138,1

5164,189

1153,2816

3605,882401

4

5063,1

5110,13

1684,2816

35,8801

5

4969,3

5101,919

18181,8256

4,932841

Итого

25520,67

25520,67

44472,512

20582,55832

 

Поскольку величина корреляционного отношения близка к единице и находится в интервале , значит, связь между признаками V и Y - умеренная, но с учётом погрешностей можно сказать даже слабая. Таким образом, вариация результативного признака у обусловлена не только действием фактора х, но и другими причинами и факторами.

 

Таблица 2.9 Впомогательная таблица для расчёта дисперсий связи Х и V

V

V(X)

(V-Vср)^2

(V(X)-Vср)^2

1

11856,92

12107,98058

2759432,612

1988363,453

2

13217,77

13421,18264

90182,49242

9387,935643

3

14569,24

13829,36033

1104949,96

96899,17924

4

14774,52

13902,38553

1578656,551

147695,3521

5

13171,92

14329,46092

119822,5917

658348,7339

Итого

67590,4

67590,37

5653044,206

2900694,654

 

Поскольку величина корреляционного отношения близка к единице и находится в интервале , значит, практически вся вариация результативного признака у обусловлена действием фактора x. Таким образом, связь между признаками V и X - сильная.

Теснота парной линейной корреляционной связи, кроме корреляционного отношения, может быть измерена коэффициентом корреляции Пирсона. Этот показатель представляет собой стандартизованный коэффициент регрессии, т.е. коэффициент, выраженный не в абсолютных единицах измерения признаков, а в долях среднего квадратического отклонения результативного признака.

Рассчитаем линейный коэффициент парной корреляции:

 

 (2.7)

 

Для связи Х и V:

 

 

Полученное значение линейного коэффициента корреляции свидетельствует о наличии сильной обратной связи между вводом в действие жилья (Х) и продуктивностью работы 1 чел. в ценах текущего года (V).

При проверке возможности использования линейной функции в качестве формы уравнения определяют разность квадратов:

 

 (2.8)

(0,72)2 – (-0,7163)2 = 0 < 0,1

 

Данная разность доказывает правильность применения линейного уравнения корреляционной зависимости для связи Х и V.

Коэффициент корреляции достаточно точно оценивает степень тесноты связи лишь в случае наличия линейной зависимости между признаками. Однако линейный коэффициент корреляции нецелесообразно применять при наличии криволинейной зависимости, поскольку он недооценивает степень тесноты связи и даже может быть равен нулю.

Действительно значение коэффициента корреляции для связей, где предполагалась параболическая зависимость, очень мало:

r = 0,1989 – для связи X и Y

r = - 0,5138 – для связи V и Y

Следовательно, условие (2.8) выполняется, что доказывает правильность применения нелинейного уравнения (уравнения параболы) корреляционной зависимости для связи Х и V и связи X и Y.

Показатели корреляционной связи, вычисленные по ограниченной совокупности, являются лишь оценками той или иной статистической закономерности, поскольку в любом параметре сохраняется элемент не полностью погасившейся случайности, присущей индивидуальным значениям признаков. Поэтому необходима статистическая оценка степени точности и надёжности параметров корреляции. Оценка линейного коэффициента корреляции и корреляционного отношения осуществляется с помощью критерия Стьюдента, критерия Фишера, среднеквадратической ошибки уравнения регрессии, а также коэффициента эластичности.

Критерий Стьюдента рассчитывается по формуле:

 

 (2.9)

По таблице распределения Стьюдента для числа степеней свободы – 3 и уровня значимости  критическое значение коэффициента Стьюдента tкр=3,182.

 

 

 

 

 

Таким образом, лишь с вероятностью меньше 5% можно утверждать, что величина tр = 0,35 могла появиться в силу случайностей выборки. Такое событие маловероятно, а поэтому можно считать с вероятностью 95%, что в генеральной совокупности действительно существует обратная связь между изучаемыми признаками, т.е. отличие выборочного коэффициента от нуля является существенным и связь установлена надёжно.

Однако следует отметить, что коэффициент корреляции для связи Х и V близок к единице, следовательно, распределение его оценок отличается от нормального или распределения Стьюдента, так как он ограничен величиной 1. В таких случаях более целесообразно использовать метод преобразования корреляции, предложенный Фишером, где для оценки надёжности коэффициента его величину преобразовывают в форму, не имеющую такого ограничения.

Критерий Фишера рассчитывается по формуле:

 

 , (2.10)


где S – число параметров уравнения; n – количество изучаемых уровней

Критерий Фишера для n = 5 и уровня значимости  = 0,05 для линейной связи Fкр = 10,13, а для параболической связи Fкр = 19

 

 

 

Следовательно, зависимость между признаками Х и Y, Y и V, а также Х и V не выявилась существенной.

Коэффициент регрессии применяется для определения коэффициента эластичности, который показывает, на сколько процентов изменится величина результативного признака при изменении признака-фактора на 1%.

Коэффициент эластичности рассчитывается по формуле:

 

, (2.12)

 

где - среднее значение факторного признака;

- среднее значение результативного признака

 

Для связи Х и Y:

Для связи V и Y:  

Для связи Х и V:  

 

Следовательно, с увеличением производительности труда 1 человека, в ценах текущего года и ввода в действие жилья на 1% себестоимость увеличивается на 0,16% и снижается на 0,13% соответственно. С увеличением продуктивности работы 1 чел. на 1% ввод в действие жилья увеличивается на 1,68%.






Выводы

Данное индивидуальное задание содержит следующие статистические методы: метод скользящей средней, метод аналитического выравнивания, экстраполяцию, индексный метод, метод аналитических группировок и сравнения параллельных рядов, корреляционный и регрессионный метода анализа.

- В первом разделе данной расчетно-графической работы были рассчитаны различные показатели динамики (абсолютный прирост, темп роста, темп прироста, абсолютное изменение одного процента прироста, а также средние показатели динамики) ввода в действие жилья и среднемесячной заработной платы за 5 лет, для выявления тенденций динамики были построены аналитические уравнения и результаты анализа представлены в графическом приложении.

- За анализируемый период 2006- 2010гг. ввод в действие жилья в среднем снизился на 192,25м2 или на 0,04%. Среднемесячная заработная плата снизилась на 1,27 грн. или на 0,06%.

- Аналитические уравнения, составленные в этом разделе позволили построить прогнозы ввода в действие жилья и среднемесячной заработной платы. Выявилось, что коэффициент вариации для уравнения параболы больше, чем для уравнения прямой, значит, уравнение прямой более точно описывает основную тенденцию динамики ввода в действие жилья, аналогичная ситуация наблюдается для динамики среднемесячной заработной платы.

- Прогнозы показали снижение ввода в действие жилья приблизительно на 1,28%, а также снижение среднемесячной заработной платы приблизительно на 8,9% по сравнению с уровнем 2010 г.

- Индексный факторный анализ рентабельности затрат показал, что в 2010 г. по сравнению с 2009 г. производительность труда 1 работника по всем предприятиям повысилась на 2,8%, объём СМР повысился на 1,3%, а численность работников повысилась на 1,4%.

- Оценка деятельности каждого предприятия показала, что за 2010г. по сравнению с 2009г. производительность затрат на первом предприятии снизилась на 10,6%, на втором предприятии возросла на 11%, на третьем предприятии также возросла на 10,2%.

- Индексы по методу средних отношений показали, что средняя производительность труда по всем предприятиям в целом выросла на 2,7%(что показывает индекс переменного состава), в том числе за счёт увеличения производительности труда по всем предприятия на 3% (это показывает индекс постоянного состава) и за счёт изменения структуры предприятий средняя производительность труда снизилась на 0,3%(это показывает индекс структурных сдвигов).

- Во втором разделе анализировалась взаимосвязь между себестоимостью (результативный фактор) и вводом в действие жилья и производительностью труда 1 чел. в ценах текущего года (факторные признаки), построены и проанализированы корреляционные уравнения, оценена сила корреляционной связи.

- Метод сравнения параллельных рядов, метод аналитических группировок и корреляционно-регрессионный анализ показали, что между продуктивностью работы 1 чел. и себестоимостью существует обратная связь (т.е. с ростом факторного признака происходит уменьшение результативного), которую можно выразить уравнением параболы. Связь между вводом в действие жилья и себестоимостью описывается уравнением параболы, а между численностью работников и вводом в действие жилья – уравнением прямой, как и предполагалось первоначально.

- Полученные значения корреляционного отношения свидетельствуют о наличии сильной связи между продуктивностью работы 1 чел. в ценах текущего года и себестоимостью, а также между продуктивностью работы 1 чел. в ценах текущего года и вводом в действие жилья. Между вводом в действие жилья и себестоимостью обнаружена умеренная связь, но с учётом погрешностей можно сказать даже слабая.

- По результатам расчёта критерия Фишера можно сделать вывод о том, что связь между продуктивностью работы 1 чел. и себестоимостью, вводом в действие жилья и себестоимостью, а также продуктивностью работы 1 чел. в ценах текущего года и вводом в действие жилья не выявилась существенной.

- Результаты расчёта коэффициента эластичности показали, что с увеличением продуктивности работы 1 человек, в ценах текущего года и ввода в действие жилья на 1% себестоимость увеличивается на 0,16% и снижается на 0,13% соответственно. С увеличением продуктивности работы 1 чел. на 1% ввод в действие жилья увеличивается на 1,68%.

На мой взгляд, предприятие работает не очень эффективно, поскольку наблюдается нестабильность экономических показателей исследуемого периода. Увеличение численности работников обеспечивает пропорциональное снижение себестоимости, однако это экстенсивный способ снижения себестоимости, который не всегда учитывает качество выполняемых работ и высокий уровень производительности труда.

Основные пути повышения эффективности производства строительного предприятия:

Эффективное производство достигается тогда, когда уже невозможно перераспределить наличные ресурсы, чтобы увеличить выпуск одного экономического блага без уменьшения выпуска другого.

1. Совершенствование аппарата управления, систематическое повышение уровня квалификации работников, подготовка кадровых резервов, потенциально способных к управленческой деятельности.

2. Повышения уровня технологий, задействованных в процессе строительства, для увеличения производительности труда.

3. Повышение качества и темпов ввода в действие жилья.

4. Воспользоваться принципом возрастающей экономии от масштаба, т.е. необходимо наращивать объём производства, поскольку это приводит к относительной экономии имеющихся ресурсов.

5. Активная инновационная деятельность предприятия – основа для снижения издержек производства, улучшения экологического состояния окружающей среды, а, следовательно, и получения дополнительной экономической прибыли.

6. Определение экономической целесообразности сооружения, размещения данного объекта в данной местности с учётом обеспечения предприятия сырьём, топливом, водой, а также условий реализации готовой продукции.

7. Учёт не только прямых, но и дополнительных затрат.

8. Рациональные проектные решения.

9. Исключение земляных работ в зимний период времени.

10. Автоматизация производственных процессов, применение эффективных машин и механизмов.

11. Развитие малоотходных и ресурсосберегающих технологий – создание замкнутых технологических циклов, с полным использованием поступающего сырья и не вырабатывающих отходов, выходящих за их рамки.

12. Повышение эффективности использования топливно-энергетических ресурсов за счёт совершенствования эксплуатации действующего энергетического хозяйства на предприятии и внедрение широкой гаммы энергосберегающих мероприятий – от автоматизированных систем учёта до модернизации технологических процессов.

 





Подборка статей по вашей теме: