Процесс формирования биопленки можно разделить на три этапа

1. Обратимое прикрепление к поверхности. Чаще всего микроорганизмы существуют в виде свободно плавающих масс или единичных (например, планктонных) колоний. Однако в нормальных условиях большинство микроорганизмов стремится прикрепиться к поверхности и, в конечном счете, образовать биопленку.

2. Перманентное прилипание к поверхности. По мере размножения бактерий они более прочно прилипают к поверхности, дифференцируются, обмениваются генами, что обеспечивает их выживаемость.

3. Формирование слизистого защитного матрикса/биопленки. Однажды устойчиво присоединившись, бактерии начинают образовывать экзополисахаридный окружающий матрикс, известный как внеклеточное полимерное вещество (extracellular polymeric substance). Это предохранительный матрикс или «слизь» (EPS-matrix). Мелкие колонии бактерий затем образуют первоначальную биопленку [1, 14].

Экспериментальные лабораторные исследования показали, что планктонные бактерии, например, стафилококки, стрептококки, псевдомонады, кишечная палочка обычно присоединяются друг к другу в течение нескольких минут; образуют прочно соединенные микроколонии в течение 2-4 часов; вырабатывают внеклеточные полисахариды и становятся значительно более толерантными к биоцидам, например, к антибиотикам, антисептикам и дезинфектантам в течение 6-12 часов; вовлекаются в зрелые колонии биоплёнки, которые очень устойчивы к биоцидам и теряют планктонные бактерии в течение 2-4 дней в зависимости от видов бактерий и условий роста; быстро восстанавливаются после механического разрушения и вновь формируют зрелую биоплёнку в течение 24 часов [1].

После необратимой адгезии популяция микроорганизма начинает интенсивно пролиферировать с образованием многоклеточных слоёв и синтезировать компоненты экзополимерного матрикса (Extracellular Polymeric Substance); это один из ключевых моментов образования биоплёнок [1, 3, 14, 17]. Применение лазерной конфокальной микроскопии, сканирующей электронной микроскопии, позволило установить, что биоплёнки имеют сложную трёхмерную структурную организацию. Состав матричной слизи варьирует в зависимости от микроорганизмов в нём присутствующих и включает полисахариды, белки, гликолипиды и бактериальную ДНК [15]. При этом основным компонентом являются полисахариды (декстран, гиалуроновая кислота, целлюлоза и другие).

Доля белков в биопленке может составлять до 60 %, липидов до 40 % и нуклеиновых кислот 1-20 % [3, 13]. Порядка 80-90 % объёма биоплёнок занимает вода, поэтому все её составляющие находятся в гидротированном состоянии. Матрикс биоплёнки разделён каналами, наполненными водой, а также имеет полости. Через каналы транспортируются питательные вещества и проходят конвективные потоки кислорода от внешних к внутренним частям биоплёнки, одновременно с этим выводятся метаболиты бактериальных клеток [3].

Формирование, рост, миграция планктонных форм клеток для колонизации в биопленках регулируются на уровне популяции посредством механизмов межклеточной коммуникации. «Quorum sensing» (QS) - это процесс коллективной координации экспрессии генов в популяции бактерий, опосредующий специфическое поведение клеток. Механизм работы QS основан на сложной иерархической регуляции целевых локусов генома бактериальной клетки. При этом регуляция осуществляется на разных уровнях воздействия: транскрипционном, трансляционном, посттрансляционном. На конкретный клеточный сигнал клетки в популяции отвечают специфическим ответом. На сегодняшний день установлено, что клеточно-клеточные взаимосвязи влияют на внутрипопуляционную дифференцировку клеток, на экспрессию генов вирулентности, регулируют ростовые процессы, характер и направление подвижности (таксис), а также бактериальный апоптоз и токсинообразование. Работу QS можно сравнить с гормональной регуляцией функциональной активности различных органов и тканей в многоклеточном организме.

Из многочисленных свойств биопленки клиническое значение имеют высокая устойчивость к факторам естественной резистентности организма, к разнообразным внешним воздействиям, к антибактериальным средствам.

Значительная резистентность к антибиотикам микроорганизмов в составе биоплёнок по сравнению с планктонными формами обусловлена способностью бактерий накапливать в матриксе внеклеточные ферменты, разрушающие антибиотики, и агрегационной природой биоплёнок, связанной с уменьшением площади открытой поверхности клеток, что приводит к физической недоступности молекул. Также особую роль играет резистентный фенотип клеток и сниженный метаболизм микроорганизмов в биоплёнке, который достигается за счёт их многослойной топографии и приводит к снижению антибиотикочувствительности. Строение биоплёнок идеально способствует процессам обмена генетической информацией, в том числе резистентности к антимикробным химиопрепаратам, за счёт тесного контакта и стабильной пространственной локализацией клеток. Исследования in vitro показывают, что уровень конъюгации в биоплёнках гораздо выше, по сравнению с планктонными формами бактерий.

Особый интерес представляют собой клетки- персистеры - альтруистические интактные клетки, способные выживать даже при высоких дозах антибиотиков, летальных для остальных микробных клеток. По данным некоторых авторов их количество варьирует от 1 до 5 % от всей популяции. Они метаболически неактивны, а их основное назначение, по-видимому, депонирование и сохранение генетического материала для последующего восстановления популяции. Фенотип персистеров характеризуется интересной биологией, они замедляют все физиологические процессы и становятся толерантными к действию разных факторов, в том числе и к воздействию антимикробных препаратов.

Действие всех механизмов устойчивости бактерий, по существу, можно свести к одному явлению - это предотвращение взаимодействия антибиотика с его мишенью (за счет изменений самих мишеней, или с помощью синтеза ферментов, нейтрализующих антибиотики). Толерантность же опосредуется способностью микробной клетки выживать в присутствии антибиотика за счет замедления метаболизма и «выключения» основных биологических процессов клетки. Антибиотики эффективно проявляют свое действие в отношении интенсивно делящихся клеток с высоким уровнем синтетических процессов. А когда клетка находится в стадии физиологического покоя («клеточного анабиоза»), антибактериальное средство не способно проявить в полной мере свою биохимическую функцию. Например, эритромицин ингибирует биосинтез белка, этим проявляется его бактериостатичный эффект (клетка не растет, не размножается, метаболизм замедляется). Но клетка не погибает непосредственно от действия препарата. Стрептомицин, аминогликозиды, фторхинолоны нарушают процессы трансляции, репликации. «Выключая» на время работу рибосом, клеткаперсистер будет проявлять толерантность к аминогликозидам, макролидам. Так как персистеры не растут, не делятся, хромосома и белковые системы репликации, репарации, транскрипции находятся в интактном состоянии, то действие фторхинолонов не проявится. Следствием вышеуказанных «выключений» биологических функций клетки является и прекращение синтеза пептидогликана, останавливается построение клеточной стенки, в связи с этим, β-лактамные антибиотики также будут не эффективны.

Еще можно писать про катетер-ассоциированные инфекции ( Ключевым моментом в патогенезе катетер-ассоциированных инфекций является формирование на внутренней и/или наружной поверхности катетера микробной биопленки)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: