Для получения полной версии работы перейдите по ссылке

Специфическая особенность кислотных дождей – их трансграничный характер, обусловленный переносом кислотообразующих выбросов воздушными течениями на большие расстояния – сотни и даже тысячи километров. Этому в немалой степени способствует принятая некогда «политика высоких труб» как эффективное средство против загрязнения приземного воздуха. Почти все страны одновременно являются «экспортерами» своих и «импортерами» чужих выбросов. Наибольший вклад в трансграничное подкисление природной среды России соединениями серы вносят Украина, Польша, Германия. В свою очередь, из России больше всего окисленной серы направляется в страны Скандинавии. Соотношения здесь такие: с Украиной – 1:17, с Польшей – 1:32, с Норвегией – 7:1. Экспортируется аэрозольная часть выбросов, сухая часть загрязнений выпадает в непосредственной близости от источника выброса или на незначительном удалении от него.

Обмен кислотообразующими и другими загрязняющими атмосферу выбросами характерен для всех стран Западной Европы и Северной Америки. Великобритания, Германия, Франция больше направляют окисленной серы к соседям, чем получают от них. Норвегия, Швеция, Финляндия больше получают окисленной серы от своих соседей, чем выпускают через собственные границы (до 70% кислотных дождей в этих странах – результат «экспорта» из Великобритании и Германии). Трансграничный перенос кислотных осадков – одна из причин конфликтных взаимоотношений США и Канады.

 

 

Таблица 2.2.

Кислотность осадков в промышленных районах мира. [7,6]

Пункт, регион   pH
МО МГУ, Москва, РФ Средневзвешенное значение 4,79
г. Кэррол, шт.Мериленд, США   4,28
г. Эссекс, шт. Нью-Йорк, США   4,44
Шотландия   4,52
Юг Норвегии Среднее многолетнее 4,1
Урал, Предуралье, СЗ и Ю ЕТР Минимальные значения 3,1-3,4

 

 

Закисление воды озёр.

Практически одновременно с закислением осадков был отмечен феномен закисления воды озер. Впервые это явление в широких масштабах было обнаружено в Швеции и Норвегии, а затем и в США и Канаде. Причиной закисления вод озер является поступление на площадь водосбора озера кислот как с осадками, так и в результате сухого поглощения.

До 50-х годов все озера Скандинавии имели нейтральную или щелочную реакцию. Озера с рН воды < 5,0 практически отсутствовали. Постоянный мониторинг химического состава озерной воды в странах Северной Европы ведется сравнительно недавно, поэтому практически невозможно установить динамику изменения кислотности в 50 е и 60 е годы. Измерения, выполненные в 70 е годы, обнаружили резкое изменение химического состава. В 70 е годы проводилось тщательное исследование озер и было установлено, что закисление продолжалось

Для получения полной версии работы перейдите по ссылке.

 

На выносливость водных организмов к изменениям кислотности воды влияет ряд факторов окружающей водной среды. В частности, жесткие воды (воды с повышенной бикарбонатной щелочностью) при той же степени закисления могут быть более токсичными за счет образования при действии привнесенных кислых вод свободной углекислоты (Н2СО3).

После того как в водоеме погибает рыба, возможности для увеличения численности получают разнообразные водные насекомые; стрекозы, ручейники, вислокрылки, планктонные мелкие двукрылые насекомые хорошо выносят закисление воды.

Сфагновые мхи предпочитают подкисленную (pH=6) воду; положительным фактором для них является и то обстоятельство, что вода в закисленных озерах становится очень светлой и прозрачной, поскольку сфагновые мхи светолюбивы. Поэтому они заселяют ложе озер, которые до закисления были для них слишком темными.

При закислении обилие обычного тростника (Phagmites communis) и растений с длинными побегами (например, рдест) уменьшается или они совсем исчезают. Водяные лилии более устойчивы, поскольку своими длинными корнями они добывают питательные вещества с больших глубин, где рН выше.

Закисление пресных вод оказывает отрицательное воздействие и на птиц, живущих на реках и озерах. Как уже говорилось, в закисленных водных объектах наблюдается много насекомых и почти нет рыбы, что благоприятно для развития птенцов, но определяет дефицит пищи для взрослых птиц. Кроме того, высокое содержание в пище птиц тяжелых металлов (особенно ртути), а также алюминия нарушает репродуктивные процессы и ведет к снижению численности популяций птиц.

Что касается состояния рек и озер России, то качество воды большинства водных объектов в течение всех последних лет наблюдений и контроля со стороны Госкомэкологии не отвечает нормативным требованиям из-за сильного загрязнения промышленными сточными водами. Все основные реки России и их крупные притоки оцениваются как «загрязненные» или «сильно загрязненные». При таком положении кислотные осадки мало изменяют качественные характеристики воды.

Закисление почв

По своему химическому составу, в том числе по показателю рН почвы могут резко отличаться друг от друга. Оптимальный диапазон рН почв для жизнедеятельности большинства растений находится в пределах 5 — 7. Изменения рН внутри этого диапазона не вызывают какого-либо заметного снижения плодородности почв. Однако падение рН ниже 5 приводит к значительному изменению свойств почв и прогрессирующему уменьшению их плодородия. При рН=З почвы становятся практически бесплодными. Следовательно, в наибольшей степени закислению подвержены почвы, имеющие начальную кислую реакцию. К таким почвам относятся широко распространенные кислые подзолы с рН= 4 — 5.

Почвы представляют собой сложные физико-химические системы, обладающие высокой буферной способностью. Выпадающие с осадками или образующиеся на поверхности свободные ионы водорода более или менее полно поглощаются при реакциях с компонентами почвы. Можно выделить пять характерных для почв важнейших буферных зон, в пределах которых происходит нейтрализация свободных ионов водорода.

1. Угольно-кислотная (карбонатная) буферная зона 6,2≤рН≤8,6. Свободные ионы водорода в этом случае поглощаются при растворении карбоната кальция. Буферная емкость определяется количеством карбоната кальция в почве.

2. Угольно-кислотная (силикатная) буферная зона 5,0≤рН<6,2. Свободные ионы водорода поглощаются при выщелачивание силикатов. Буферная емкость зависит от типа и количества исходных силикатов.

3. Катионно-обменная буферная зона, 4,2≤рН<5,0. Свободные ионы водорода поглощаются за счет выщелачивания Al(OH)3 из силикатов с образованием полимерных алюминийгидроксикатионов. Последние замещают ионы кальция и магния на поверхности катионнообменных коллоидов. Буферная емкость зависит от наличия выветриваемых силикатов.

4. Алюминиевая буферная зона, 3,0≤рН<4,2. Свободные ионы водорода поглощаются при образовании ионов Al3+ из полимерных алюминийсодержащих веществ. Буферная емкость определяется наличием алюминия в почве. Как правило, она высока для всех типов почв, за исключением почв с высоким содержанием кварцевого песка.

5. Железная буферная зона, 2,5≤рН<3,0. Свободные ионы водорода поглощаются при образовании ионов железа из окислов железа. Многие почвы отличаются высоким содержанием окислов железа, поэтому буферная емкость достаточно велика.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: