Механизмы трансформации загрязнений в окружающей среде

 

Загрязняющие вещества, источниками выделения которых являются транспортные объекты, распространяются и накапливаются во всех компонентах биосферы (воде, воздухе, почвах, растениях, животных).

Химические элементы и их соединения, обладая определенной подвижностью, устойчивостью, способностью к концентрации и рассеянию во вторичных обстановках кислой, щелочной или нейтральной среды, мигрируют в окружающей среде и воздействуют на биоту (флору и фауну).

К числу основных загрязнителей атмосферы относятся взвешенные частицы, СО, СО2, NOх, соединения серы, углеводороды, свинец, ртуть, кадмий, хлорированные органические соединения, аммиак, фреоны, радиоактивные вещества.

Изменения в атмосфере связаны с естественными и техногенными факторами нарушения газового равновесия в ней (СО2, О3 и др.); явлением ксеротизации (сухости) климата суши; загрязнением и химическими изменениями, влияющими на энергетические процессы перемещения воздушных масс, на закономерности формирования погоды и климата. Под влиянием транспортных загрязнений изменения в окружающей среде могут происходить в общепланетарном и региональном (локальном) масштабах.

К загрязнителям, вызывающим разрушение озонового слоя, который поглощает часть падающего на Землю излучения Солнца, относятся озоноразрушающие вещества искусственного происхождения. В их числе хлорфторуглероды, бромистый метил, талоны. Хлорфторуглероды используются в качестве газов-вытеснителей в аэрозольных упаковках, при производстве мягких и твердых пористых веществ для изготовления автомобильных кресел, в автомобильных кондиционерах. Бромистый метил СН3Вг используется в виде добавки к автомобильному топливу. Талоны (галон-1301) используются для пожаротушения.

Выделяемая в окружающую среду транспортом теплота оказывает на атмосферу заметное воздействие, изменяя ее тепловой режим.

Количество выделяемой теплоты в ОС примерно равно потребляемой энергии, так как почти вся эта энергия передается окружающей среде или преобразуется в потенциальную энергию продукции или обрабатываемых объектов, что имеет место при металлообработке, в нефтеперерабатывающей, шинной промышленности, строительстве, совершении транспортной работы. Более точная оценка выделяемой в окружающую среду теплоты транспортным комплексом определяется уравнением теплового баланса:

 

, (9.1)

 

где  - количество теплоты, отдаваемой окружающей среде в процессах реализации жизненных циклов транспортных объектов и сооружений, Дж;

 - теплота, отдаваемая окружающей среде двигателями, технологическими печами и горел очными устройствами в результате тепловых потерь, Дж

 - теплота, отдаваемая ОС в процессах механического трения при движении транспортных средств (торможение, износ агрегатов), обработки заготовок деталей, других процессах, Дж;

 - теплота, отдаваемая окружающей среде объектами дорожного хозяйства, в том числе дорожным покрытием с низкой отражательной способностью для солнечных лучей видимого спектра и высокой теплоемкостью для длинноволновых лучей, Дж. Поэтому дорожное является интенсивным источником тепловыделения (температура покрытия на солнце на 25° превышает температуру воздуха на уровне 2 м и интенсивность тепловыделения превышает в 3-4 раза фоновые излучения, достигая 700-840 Вт/м2).

Объекты транспорта (в местах концентрации транспортных коммуникаций) оказывают влияние на формирование теплового режима и атмосферных процессов в городах и отдельных регионах. Воздействия тепловых выбросов транспорта и промышленности в крупных городах вызывает локальное повышение температуры воздуха над отдельными транспортными магистралями, дорожной сетью города или регионом в целом. Это области атмосферного воздуха с повышенной - "острова теплоты" температурой над транспортными магистралями неустойчивы во времени вследствие воздействия ветра и других атмосферных факторов.

Выбросы транспорта и предприятий в атмосферный воздух изменяют газовый состав атмосферы. Острова теплоты влияют на образование туманов, количество осадков, влажность воздуха, давление, интенсивность солнечной радиации.

Тепловые аномальные поля, возникающие из-за тепловыделения промышленности и транспорта, оказывают воздействие не только на образование купола теплоты над городом, но и непосредственно на природные среды, в частности приводят к изменению микроклимата, иссушению воздуха и почв, что неблагоприятно влияет на растительность и ведет к ее стрессовому состоянию.

Литосфера загрязняется тем, что в ее недрах размещаются разнообразные транспортные коммуникации и сооружения, в том числе путепроводы, стоянки автотранспорта; организуется хранение нефти, моторных топлив, газа, различных материалов, захоронение вредных веществ и отходов производства. Работы по преобразованию рельефа земной коры и ландшафта (строительство дорог, различных сооружений, объектов) сопровождается деформацией земной коры, изменением геологических процессов образования полезных ископаемых, других минералов; изменением фильтрационных режимов почв; изменением режимов поверхностных и грунтовых вод; оседанием и просадками грунтов, вызванными их растворением, увлажнением, изменением консистенции.

Ответ организма на воздействие зависит от количества загрязняющего вещества или его дозы в организме, величина которой зависит от путей поступления в организм - при вдыхании (ингаляционно), с водой и пищей (перорально),или абсорбируются через кожу, или воздействие происходит посредством внешнего облучения. Ингаляционный и пероральный пути поступления определяют биохимические способы воздействия загрязнителей на организм. В целом человеческий организм производит детоксикацию поступающих с пищей загрязнителей более эффективно, чем тех, которые поступают посредством вдыхания.

Пороговые эффекты воздействия загрязнителя или другого техногенного фактора характеризуются тем, что некоторые количества загрязнителя ниже определенного уровня концентраций (порога) не вызывают отрицательных последствий для здоровья населения. Различают практический и абсолютный пороги, когда будет достигнута критическая концентрация или доза. Практический порог характеризует границу статистически регистрируемого эффекта, когда последний превышает колебания соответствующего фонового уровня объектов.

Нарушения в состоянии здоровья могут наблюдаться при приближении концентрации загрязнителя в среде (и соответственно - дозы воздействия) к пороговому значению или его превышении. Функции реакции организма на воздействие выше порогового уровня, как правило, имеют S-образную форму и характеризуются дозой LD50 или концентрацией LC50.

Эффекты воздействия подразделяются на пороговые а беспороговые. К беспороговым относятся канцерогенные и генетические эффекты, вызванные действием на геном человека мутагенов или радиационного облучения в малых дозах. Действие мутагенов носит вероятностный характер, и многие мутагены одновременно являются канцерогенами. Любое количество этих загрязнителей в воздухе предопределяет отличный от нуля риск смерти от новообразований или наследственных изменений.

К пороговым эффектам относятся эффекты больших доз радиоактивного облучения (лучевая болезнь разной степени тяжести, катаракта, определенные формы легочных заболеваний и др.), часть эффектов физических факторов воздействия и большинство токсических эффектов, вызываемых токсикантами (неканцерогенами).

Индивидуальные отклики на действие загрязнителей не идентичны. Кривые (пороги)"доза-эффект" отличаются для разных индивидуумов, хотя в общем случае имеют форму S-образной кривой. Распределение индивидуальных реакций зависит от возраста, пола, общего состояния организма.

Для беспороговых загрязнителей такой подход невозможен. В этом случае пределы концентраций и выбросов устанавливаются с использованием методов, основанных на сравнительном анализе рисков, т.е. исходя из приемлемого (желательного) риска. Существует постоянная необходимость уточнения количественных оценок риска, хотя до конца не ясен механизм действия канцерогенов и мутагенов на человека.

Большинству загрязнителей требуется время для вступления в реакцию, поэтому важна не только концентрация, но и время воздействия. Пример эффекта действия СО на организм человека представлен на рисунке 9.1

 

Рисунок 9.1 - Действие СО на организм человека

1 - смертельная доза; 2-головная боль; 3-начало токсического воздействия; 4-заметное воздействие.

 

При установлении максимально допустимых концентраций веществ в среде временной фактор учитывается посредством установления предельных значений, зависящих от времени воздействия (максимально-разовые, среднесуточные, среднегодовые ПДК).

По характеру действия транспортных загрязнений на окружающую среду можно выделить два подтипа, определяющие особенности подходов к их изучению:

¾ со специфическим действием (небольшое количество веществ);

¾ с хроническим неспецифическим (провоцирующим) влиянием, которое определяется специфическими симптомами и признаками.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: