Газопламенная резка: эскиз деталей, оборудование, режимы

 

Газопламенная обработка, совокупность технологических процессов тепловой обработки металлов пламенем горючих газов сварочных горелок: кислородная резка стали, флюсокислородная резка.

Кислородная резка, газовая резка, способ резки металлических деталей, основанный на свойстве металлов, нагретых до температуры воспламенения, гореть в технически чистом кислороде. При К. р. на нагретый до 1200-1300°С металл направляют струю кислорода, прожигающую металл и разрезающую его. Образующиеся окислы железа в расплавленном состоянии вытекают и выдуваются из полости реза. Этим способом режут изделия из углеродистых низко- и среднелегированных сталей обычно толщиной от 1 мм до 200-300 мм (возможна К. р. стали толщиной до 2 м).

Разновидностью кислородной резки является флюсокислородная резка, которой разделяют металлы, трудно поддающиеся резке (высокохромистые и хромоникелевые стали), а также чугуны и алюминиевые сплавы. В этом случае процесс облегчают вдуваемые вместе с кислородом порошкообразные флюсы. Кроме разделительной К. р., при которой режущая струя почти перпендикулярна поверхности металла, применяют кислородную обработку (т. н. строжку). При этом режущую струю направляют под небольшим углом (почти параллельно) к поверхности металла.

Различают два основных вида кислородной резки: разделительную и поверхностную. Разделительную (рис. 27, а) применяют для вырезки различного вида заготовок, раскроя листового металла, разделки кромок под сварку и других работ, связанных с разрезкой металла на части.

Сущность процесса заключается в том, что металл вдоль линии разреза нагревают до температуры воспламенения его в кислороде, он сгорает в струе кислорода, а образующиеся оксиды выдуваются этой струей из места разреза.

Поверхностную резку применяют для снятия поверхностного слоя металла, разделки каналов (рис. 27,6), удаления поверхностных дефектов и других работ. Резаки имеют большую длину и увеличенные сечения каналов для газов подогревающего пламени и режущего кислорода.

 

 

 

Рис. 27

 

Оборудование

 

Кислородную резку производят резаком — специальной сварочной горелкой с дополнительным устройством для подвода кислорода. В зависимости от использования для нагрева металла горючего газа различают ацетиленокислородную, водородно-кислородную, бензинокислородную и др. резку, ручную и машинную. Машинная кислородная резка обеспечивает высокую точность и чистоту реза при большой производительности. На машинах производят резку по шаблонам, специальным направляющим, чертежу, копируя его в любом масштабе; возможно использование сразу нескольких резаков для одновременной резки деталей. Кислородную резку можно автоматизировать, используя фотоэлектронное устройство.

Резаки классифицируют по назначению (универсальные и специальные); по принципу смешения газов (инжекторные и безынжекторные); по виду резки (разделительной и поверхностной резки); по применению (для ручной и машинной резки). Большее применение получили универсальные инжекторные ручные резаки для разделительной резки. Они отличаются от сварочных горелок наличием отдельной трубки для подачи режущего кислорода и особым устройством головки, состоящей из двух сменных мундштуков (наружного — для подогревающего пламени; внутреннего — для струи чистого кислорода).

Большое применение получил резак «Факел», для работы на газах заменителях ацетилена используют резаки типа РЗР, для машинной резки стационарные шарнирные машины АСШ – 2 и АСШ – 7.

 

Режимы обработки

 

При резке листового материала толщиной до 20...30 мм мундштук резака устанавливают вначале под углом 0…5 к поверхности, а затем — под углом 20…30° в сторону, обратную движению резака. Это ускоряет процесс разогрева металла и повышает производительность процесса резки.

Резку металла большой толщины выполняют следующим образом. Мундштук резака вначале устанавливают перпендикулярно поверхности разрезаемого металла, так чтобы струя подогревающего пламени, а затем и режущего кислорода располагалась вдоль вертикальной грани разрезаемого металла. После прогрева металла до температуры воспламенения пускают струю режущего кислорода. Перемещение резака вдоль линии резания начинают после того, как в начале этой линии металл будет прорезан на всю его толщину. Чтобы не допустить отставания резки в нижних слоях металла, в конце процесса следует постепенно замедлить скорость перемещения резака и увеличивать наклон мундштука резака до 10…15° в сторону, обратную его движению.

Рекомендуется начинать процесс резки с нижней кромки (рис. 28).

Рис. 28

 

Предварительный подогрев до 300…400°С позволяет производить резку с повышенной скоростью. Скорость перемещения резака должна соответствовать скорости горения металла. Если скорость перемещения резака установлена правильно (1...6), то поток искр и шлака вылетает из разреза прямо вниз, а кромки получаются чистыми, без натеков и подплавлений. При большой скорости перемещения резака поток искр отстает от него, металл в нижней кромке не успевает сгореть и сквозное прорезание прекращается. При малой скорости сноп искр опережает резак, кромки разреза оплавляются и покрываются натеками.

Давление режущего кислорода устанавливают в зависимости от толщины разрезаемого металла и чистоты кислорода. Чем выше чистота кислорода, тем меньше давление и расход кислорода. Зависимость давления кислорода от толщины металла при ручной резке следующая:

Толщина металла, мм: 5...20, 20...40, 40...60, 60...100, 100...200.

Давление кислорода Р, МПа: 0,3...0,4, 0,4...0,5, 0,5...0,6, 0,7...0,9, 1,0...1,1.

Ширина и чистота разреза зависят от способа резки и толщины разрезаемого металла. Машинная резка дает более чистые кромки и меньшую ширину разреза, чем ручная резка. Чем больше толщина металла, тем больше ширина разреза. Это видно из следующих данных:

Толщина металла, мм: 5...50, 50...100, 100...200, 200...300.

Ширина разреза, мм: при ручной резке: 3...5, 5...6, 6...8, 8...10.

При машинной резке: 2,5...4,0, 4,0...5,0, 5,0...6,5, 6,5...8,0.

Процесс резки вызывает изменение структуры, химического состава и механических свойств металла. При резке низкоуглеродистой стали тепловое влияние процесса на ее структуру незначительно. Наряду с участками перлита появляется неравновесная составляющая сорбита, что даже несколько улучшает механические качества металла. При резке стали, имеющей повышенное содержание углерода и легирующие примеси, кроме сорбита образуются троостит и даже мартенсит. При этом сильно повышается твердость и хрупкость стали и ухудшается обрабатываемость кромок разреза. Возможно образование холодных трещин. Изменение химического состава стали проявляется в образовании обезуглероженного слоя металла непосредственно на поверхности резания. Это происходит в результате выгорания углерода под воздействием струи режущего кислорода. Несколько глубже находится участок с большим содержанием углерода, чем у исходного металла. Затем по мере удаления от разреза содержание углерода уменьшается до исходного. Также происходит выгорание легирующих элементов стали.

Механические свойства низкоуглеродистой стали при резке почти не изменяются. Стали с повышенным содержанием углерода, марганца, хрома и молибдена закаливаются, становятся более твердыми и дают трещины в зоне резания.

Нержавеющие хромистые и хромоникелевые стали, чугун, цветные металлы и их сплавы не поддаются обычной кислородной резке, так как не удовлетворяют указанным выше условиям.

Для этих металлов применяют кислородно-флюсовую резку.

В качестве флюса используется мелкогранулированный железный порошок марки ПЖ-5М. При резке хромистых и хромоникелевых сталей во флюс добавляют 25...50% окалины; при резке чугуна добавляют около 30...35% доменного ферро-фосфора; при резке меди и ее сплавов применяют флюс, состоящий из смеси железного порошка с алюминиевым порошком (15...20%) и феррофосфором (10...15%).

Резку производят установкой типа УРХС-5, разработанной ВНИИавтогенмаш и состоящей из флюсопитателя и резака. Установка используется для ручной и машинной кислородно-флюсовой резки высоколегированных хромистых и хромоникелевых марок сталей толщиной 10...200 мм при скорости резания 230...760 мм/мин. На 1 м разреза расходуется кислорода 0,20...2,75 м3; ацетилена — 0,017...0,130 м3 и флюса — 0,20...1,3 кг.

При кислородно-флюсовой резке некоторая часть теплоты подогревающего пламени уходит на нагревание флюса. Поэтому мощность пламени берется на 15...25% выше, чем при обычной резке. Пламя должно быть нормальным или с некоторым избытком ацетилена. Расстояние от торца мундштука резака до поверхности разрезаемого металла устанавливается в пределах 15...20 мм. При малом расстоянии частицы флюса отражаются от поверхности металла и, попадая в сопло резака, вызывают хлопки и обратные удары. Кроме того, наблюдается перегрев мундштука, приводящий к нарушению процесса резки. Угол наклона мундштука резака должен быть в пределах 0...100 в сторону, обратную направлению резки. Хорошие результаты дает предварительный подогрев. Хромистые и хромоникелевые "тали требуют подогрева до 300...400°С, а сплавы меди — 200...350°С.

Скорость резки зависит от свойств металла и от его толщины. Чугун толщиной 50 мм режут со скоростью 70...100 мм/мин. При этом на 1 м разреза расходуется 2...4 м3 кислорода, ''16…25 м3 ацетилена и 3,5...6 кг флюса. Примерно такие же данные получают при резке сплавов меди. При резке хромистых и хромоникелевых сталей расход всех материалов снижается почти в 3 раза.

 

 



Список используемой литературы

 

1. Барбашов Ф.А., Сильвестров Б.Н. Фрезерные и зуборезные работы: Учебник. - М.: Высш. шк., 1983. – 284 с

2. Бергер И.И. Токарное дело. – М.: Высш. шк.., 1980. – 314 с

3. Бергер И.И., Комлев А.П. Фрезерное дело: Учеб. пособие. - М.: Высш. Школа., 1981.- 305 с

4. Винников И.З. Устройство сверлильных станков и работа на них. – М.:Высш. шк., 1978.- 263 с

5. Геворкян В.Г. Основы сварочного дела: Учебник.- М.: Высш. шк., 1991. – 239 с

6. Горбунов Б.И. Обработка металлов резанием, металлорежущий инструмент и станки. Учеб. пособие для студентов немашиностроительных специальностей вузов. — М.: Машиностроение, 1981. - 287 с

7. Захаров И.В. Технология токарной обработки. - Лен-д.: лениздат., 1972 – 489 с

8. Кащук В.А., Верещагин А.Б. Справочник шлифовщика.- М.: Машиностроение., 1988. – 480 с

9. Комлев А.П. Справочник молодого фрезеровщика. М.: Высш. Шк., 1981. – 288 с

10. Лакирев С.Г. Обработка отверстий: Справочник.- М.: Машиностроение., 1984. - 208 с.

11. Лоскутов В.В. Шлифование металлов: Учебник.- М.: Машиностроение., 1979. -243 с

12. Малаховский В.А. Руководство для обучения газосварщика и газорезчика: Практическое пособие. – М.: Высш. шк., 1990.- 303 с

13. Рыбаков В.М. Дуговая и газовая сварка: Учеб.,— 2-е изд., перераб. — М.: Высш. шк., 1986.—208 с

14. Соколов И.И. Газовая сварка и резка металлов: Учебник. – М.: Высш. шк., 1981. – 320 с


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: