Допускаемые контактные напряжения в проверочном расчете

Допускаемые контактные напряжения σHР определяют раздельно для шестерни и колеса, МПа:

σHР = ×ZR×Zu×ZL×ZX×,

 

где σHlimb – предел контактной выносливости поверхностей зубьев, соответствующий базовому числу циклов напряжении;

sHlimb1= 600 МПа, sHlimb2= 570 МПа – рассчитаны ранее;

SH = 1,1 – минимальный коэффициент запаса прочности (для однородной структуры);

ZN1,2 =0,9 – коэффициент долговечности (определены в проектировочном расчете);

ZL = 1– коэффициент, учитывающий влияние вязкости смазочного материала (т.к. отсутствуют экспе­риментальные данные);

ZR = 1 – коэффициент, учитывающий влияние исходной шероховатости сопряженных поверхностей зубьев (т.к. отсутствуют экспериментальные данные);

Zu = 1– коэффициент, учитывающий влияние окружной скорости (т.к. скорость < 5 м/с);

ZX1,2 = 1 – коэффициент, учитывающий размер зубчатого колеса поскольку d1 < 700 и d2 < 700

Тогда допускаемые контактные напряжения, МПа:

 

,

.

В качестве допускаемого контактного напряжения передачи, которое сопоставляют с расчетным, принимают:

 

sHP = sHP2=sНРmin =438,615

 

Сопоставим расчетное и допускаемое контактные напряжения:

 

σH ≤ σHP,

389,448 ≤ 438,615 – условие выполнено.

недогруз = , что меньше максимально допустимых 20%.

 

12. Проверочный расчет на контактную выносливость при действии максимальной нагрузки

 

Действительное напряжение sHmax определяют по формуле:

 

≤sHPmax

 

где КAS = 3 – коэффициент внешней динамической нагрузки при расчетах на прочность от максимальной нагрузки;

КA = 1 – коэффициент, учитывающий внешнюю динамическую нагрузку, (определен ранее);

Тмах / TH = Кпер = 1,45(исходные данные).

Таким образом:


 МПа.

 

Допускаемое контактное напряжение при максимальной нагрузке, не вызывающее остаточных деформаций или хрупкого разрушения поверхностного слоя sHPmax, зависит от способа химико-термической обработки зубчатого колеса и от характера изменения твердости по глубине зуба. Для зубьев, подвергнутых улучшению, принимают:

 

sHPmax1,2= 2,8sТ

тогда sHPmax1= 28·690 =1932 МПа, sHPmax2= 28·540 =1512 МПа.

 

Проверка условия прочности:

 

sHmax ≤ sHPmax1 → 812,258 МПа ≤ 1932 МПа – условие выполнено;

sHmax ≤ sHPmax2 → 812,258 МПа ≤ 1512 МПа – условие выполнено.

13. Расчет зубьев на выносливость при изгибе

 

13.1 Определение расчетного изгибного напряжения

 

Расчетом определяют напряжение в опасном сечении на переходной поверхности зуба для каждого зубчатого колеса.

Выносливость зубьев, необходимая для предотвращения усталостного излома зубьев, устанавливают сопоставлением расчетного местного напряжения от изгиба в опасном сечении на переходной поверхности и допускаемого напряжения:

 

sF £ sFP.

Расчетное местное напряжение при изгибе определяют по формуле, МПа:

 

sF = ×KF×YFS×Yβ×Yε

 

где FtF =1990,538– окружная сила на делительном цилиндре, Н;

bω = 50– рабочая ширина венца зубчатой передачи, мм;

m = 2,5– нормальный модуль, мм;

YFS – коэффициент, учитывающий форму зуба и концентрацию напряжений определяется по формуле:

 

,

 

где x1 = x2 = 0 – коэффициенты смещения;

zu1 = z1 / cos3β = 29/13 = 29 – эквивалентное число зубьев шестерни,

zu2 = z2 / cos3β = 71/13 = 71 – эквивалентное число зубьев колеса.

 

Тогда:

 

,

,

 

Yβ = 1(т.к. β = 0)– коэффициент, учитывающий наклон зуба;

 

Yε =1(т.к. передача прямозубая) – коэффициент, учитывающий перекрытие зубьев;

KF – коэффициент нагрузки принимают по формуле:

KF = KA×KFu×KFb×KFa,

где KA = 1– коэффициент, учитывающий внешнюю динамическую нагрузку (не учтенную в циклограмме нагружения);

KFu = 1,225– коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении до зоны резонанса определяется по таблице.

KFb = 1,07 – коэффициент, учитывающий неравномерность распределения на­грузки по длине контактных линий (по графику);

KFa = 1(т.к. прямозубая передача)– коэффициент, учитывающий распределение нагрузки между зубьями;

Таким образом:

 

KF = KA×KFu×KFb×KFa = 1×1,225×1,07×1 = 1,311.

 

Тогда:

sF1 = ×KF×YFS1×Yβ×Yε = ×1,311×3,925×1∙1 = 81,941 МПа,

sF2 = ×KF×YFS2×Yβ×Yε = ×1,311×3,656×1∙1 = 76,325 МПа.

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: