Схема холодильного цикла

Введение

 

В современном мире из всего ассортимента бытовой техники, наибольшее использование нашли холодильные приборы (в дальнейшем холодильники). Холодильники используют как в промышленной, так и в бытовой сферах жизни человека.

Холодильник предназначен для длительного хранения продуктов (пища, вода и т.д.), что значительно уменьшает затраты как и предприятия в целом (например, хранение полуфабрикатов), так и человека.

Основной частью холодильника является мотор-компрессор (в дальнейшем компрессор). От исправности и надлежащей работы компрессора зависит уровень производительности холодильника, а также его срок службы.

Компрессоры различают: винтовой, поршневой и т.д. В настоящее время наиболее широкое применение нашли поршневые герметичные мотор-компрессоры.

Поэтому, в данной курсовой работе рассматриваются системы охлаждения герметичных поршневых мотор-компрессоров.

Для дальнейшего рассмотрения темы данной курсовой работы необходимо начать с определения «герметичный компрессор холодильный». В силу обязательной герметичности компрессоров, примем определение «компрессор холодильный».



Компрессор холодильный

 

Холодильный компрессор определяет производительность и экономичность холодильной установки.

Любой холодильный компрессор представляет собой устройство, обеспечивающее циркуляцию хладагента в системе холодильного агрегата. Именно качество работы компрессора становится решающим фактором, определяющим работоспособность холодильной установки, ее производительность и экономичность. Винтовой компрессор и поршневой компрессор: использование в различных отраслях производства

Компрессор – это сердце холодильной установки. Область использования данного типа компрессоров достаточно обширна. Винтовой компрессор, предназначен для работы в широком диапазоне температур и климатических условий. Они предназначены для работы в составе установок систем хладоснабжения промышленного назначения:

•систем кондиционирования;

•охлаждения жидкостей;

•камер и складов хранения;

•систем заморозки и шоковой заморозки продуктов;

•скороморозильных аппаратов.

Поршневой компрессор предназначен для работы в составе установок хладоснабжения коммерческого назначения:

•в составе центральных компрессорных станций;

•для малых и средних камер хранения;

•низкотемпературных камер заморозки и т.д.

Холодильные компрессоры представляют собой устройства, обеспечивающие циркуляцию хладагента в системе холодильного агрегата. Именно качество работы компрессора становится решающим фактором, определяющим работоспособность холодильной установки, ее производительность и экономичность.

Высокие эксплуатационные качества компрессоров также не вызывают сомнений. Полугерметичные и винтовые компрессоры пользуются заслуженной популярностью.

 



Система охлаждения компрессоров холодильных

 

Компрессор, бесспорно, является важнейшей частью холодильной установки, однако ее эффективная и безаварийная работа невозможна без надежной системы охлаждения. В современных холодильных установках используется как воздушное, так и жидкостное охлаждение.

Конденсатор воздушного охлаждения (конденсатор воздушный) - это теплообменный аппарат, в котором хладагент переходит из парообразного состояния в жидкое. Сжатые пары хладагента, поступая в конденсатор воздушный, охлаждаются и конденсируются, - это и есть переход в жидкое состояние. Процесс сопровождается выделением тепла, поступающего во внешнюю среду.

Холодильные поршневые компрессоры уже много лет успешно используются в различных областях охлаждения: от глубокой заморозки до аэрокондиционирования.

Компрессоры «Поколение 2» имеют единую техническую концепцию, охватывают всю область применения.

Традиционные и хлор-несодержащие HFC хладагенты.

Основные характеристики:

•передовая конструкция клапанных досок;

•высочайшее качество и износостойкость коленвалов и шатунно-поршневой группы;

•высокоэффективные встроенные электромоторы с охлаждением всасываемыми парами;

•апробированная система возврата масла;

Для низкотемпреатурного применения на R22 компрессоры оснащаются системами «Varicool», «CIC», используются в качестве Бустер-ступеней.

Основные характеристики последней разработки — «Октагон-серии»:

•компактность;

•малое требуемое место для установки;

•универсальное применение;

•минимальная потребляемая мощность;

•особенно малая шумность;

•отсутствие вибрации.

 


3. Система охлаждения компрессора «CIC»

CIC-система -электронно контролируемый впрыск хладагента в одноступенчатый герметичный поршневой компрессор.

Рассмотрим использования CIC-системы в герметичных поршневых компрессорах фирмы BITZER.


Общее описание

 

Использование хладагента R22 вместо R502 в низкотемпературных системах предъявляет особенно высокие требования к компрессору и системе смазки. Температура нагнетаемого газа может вместе с повышенным давлением конденсации быстро достигать недопускаемых значений, где срок стабильности холодильного масла очень короток и поэтому срок службы компрессора уменьшается. CIC-система (прибор электронного контроля впрыска требуемого хладагента), это действующий надежный метод ограничения температуры нагнетания 4 и 6 цилиндровых одноступенчатых поршневых компрессоров.

Описание функций

 

C компрессорами большой производительности, при достаточном внешнем принудительном воздушном охлаждении, как и с VARICOOL-системой, не используется. Причина этому - менее благоприятные взаимоотношения, при увеличивающейся производительности, тепла двигателя и компрессора к внешней поверхности охлаждения компрессора. Для улучшения охлаждения в ограниченной термо-области, BITZER разработал систему, где охлаждение всасываемого газа, внешняя поверхность охлаждения и управляемый впрыск хладагента объединены.

Центральной единицей данного объединенного метода охлаждения является система-CIC с контрольным модулем (2), температурным сенсором (3) и импульсный клапан впрыска (5). Первичной функцией данных компонентов является продолжительный контроль температуры нагнетания, регулируемый модулем управления (рис.1). Когда температура нагнетания достигает определенного значения - жидкий хладагент впрыскивается в камеру всасывания компрессора (после двигателя) и в направлении против стенок горячего цилиндра, при помощи специальной диафрагмы (4). Импульсный клапан впрыска (5) гарантирует точно дозированную количественную регуляцию. Жидкий хладагент охлаждает область цилиндра, благодаря испарению, и в то же время сокращает температуру всасываемого газа (перегрева) передаваемого из двигателя. Эта мера объединена с внешним принудительным охлаждением. Этот метод устанавливает температуру нагнетаемого газа в одноступенчатом сжатии на уровне, рассматриваемом как безопасный, при практических условиях. При понижении температуры, впрыск прерывается, и затем снова запускается по требованию. В случае недостаточного охлаждения или слишком критических условий работы компрессор отключается для безопасности. Ошибка может быть зарегистрирована при помощи потенциального свободного пускового реле.


Рисунок 1. Герметичный поршневой компрессор с CIC-системой и дополнительным вентилятором

1. Компрессор.

2. Модуль управления.

3. Температурный сенсор.

4. Сопло впрыска.

5. Импульсный клапан впрыска.

6. Добавочный вентилятор.


Диапазон применения

 

Несмотря на высокую степень развития этой системы охлаждения, предел применения должен быть меньше, чем у двухступенчатого компрессора или такой же производительности, по техническим причинам. Это надо рассматривать как направленный впрыск хладагента для охлаждения компрессора, произведенный по специальным условиям.  При большем количестве впрыска, из-за особенно высоких требований охлаждения (крайние условия работы), существует повышенная опасность смывания масляной пленки со стенок цилиндра, благодаря высокому насыщению масла невыпаренным хладагентом. В добавление - объемный поток из испарителя меньше и поэтому производительность хладагента и эффективность работы уменьшается. Следуя девизу BITZER “максимум производственной надежности и эффективности”, эта система рекомендуется только там, где температура конденсации регулируется потоком газа и где исключаются большие объемы. В добавление к этому, перегрев всасываемого газа следует сохранять на таком низком уровне, как только можно, и температура, испарения не должна достигать слишком низких значений. Впрыск

 

газа затем будет происходить только периодически в работе и поэтому сокращается влияние на производительность и уменьшается опасность теплового износа ведущих частей.

 

 

Пояснение к диаграмме: (1) Применение в этой области также технически возможно, тем не менее следует ограничивать к исключениям из-за сокращенной холодопроизводительности, эффективности и рабочей надежности (смотри объяснения). Так же возможна работа с высокими температурами испарения (Tоmax. - 5C).




Схема холодильного цикла

 

Холодильный цикл в основном идентичен с другими нормальными технологиями. Наиболее важное отличие - добавочное трубное подсоединение от жидкостной линии к импульсному клапану впрыска на компрессоре. Чтобы обеспечить доступ кипящей свободной жидкости, трубопроводы следует устанавливать на горизонтальной секции жидкостной линии и прежде всего направлять вниз. Фильтр должен быть установлен для защиты импульсного клапана впрыска и компрессора; смотровое стекло дает возможность визуальной проверки жидкостного снабжения. Размеры жидкостной линии к импульсному клапану впрыска: 10 мм (3/8”). Конструкция и управление цикла имеет важное влияние от цикла впрыска и поэтому от полной производительности изделия. Перегрев всасываемого газа и разницу между давлением конденсации и всасывания следует сохранять как можно меньше (устанавливайте минимальный перегрев!).

Рекомендуемые особенности конструкции:

· Хорошая изоляция линии всасывания/ короткие прогоны труб;

· Отказ от теплообменников (когда возможно);

· Низкое давление падения в трубах и составляющих;

· Малая температурная разница испарителя и конденсатора;

· Контроль давления конденсации.


Рисунок 2. Схема цикла одноступенчатого поршневого компрессора с CIC-системой.

1. Компрессор.

2. Модуль управления.

3. Температурный сенсор.

4. Сопло впрыска.

5. Импульсный клапан впрыска.

6. Добавочный вентилятор.

7. Смотровое стекло.

8. Фильтр.

9. Конденсатор.

10. Жидкостной ресивер.

11. Вентиль расширительный (испаритель).

12. Испаритель.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: