Целью теплового расчета является определение количества воды, необходимой для охлаждения нитрозного газа при данных условиях.
Исходные данные:
-температура нитрозных газов на входе в холодильник, 0С 130
-температура нитрозных газов на выходе из холодильника, 0С 65
-температура охлаждающей воды, 0С 40
Температурные ряды и теплоты образования веществ, участвующих в процессе.
Соединение | Температурный ряд | Энтальпия, кДж/моль | ||
A | b | c’ | ||
O2 | 31,46 | 3,39 ![]() | -3,37 ![]() | 0 |
N2 | 27,87 | 4,27 ![]() | 0 | 0 |
H2O | 30 | 10,71 ![]() | 0,33 | -241,84 |
NO | 29,58 | 3,85 ![]() | -0,59 ![]() | 90,37 |
NO2 | 42,93 | 8,54 ![]() | -6,74 ![]() | 33,89 |
Тепловой баланс холодильника-конденсатора
Тепловой баланс холодильника-конденсатора имеет следующий вид:
Q1+Q2+Q3+Q4+Q5=Q1’+Q2’+Q3’+Q4’,
где Q1-тепло, вносимое нитрозным газом;
Q2-тепло окисления монооксида азота в диоксид;
Q3-тепло образования моногидрата;
Q4-тепло разбавления моногидрата;
Q5-тепло конденсации воды;
Q1’-тепло, уходящее с нитрозным газом;
Q2’-тепло, уходящее с кислотой;
Q3’-теплопотери;
Q4’-тепло, отводимое с охлаждающей водой.
Приход тепла
Рассчитаем теплоемкости компонентов газовой смеси на входе в холодильник- конденсатор при температуре 130 или 403К.
Теплоемкость кислорода:
Теплоемкость азота:
Теплоемкость воды:
Теплоемкость оксида азота (II):
Теплоемкость оксида азота (IV):
Средняя теплоемкость нитрозного газа на входе в аппарат:
1)Тепло, вносимое нитрозным газом:
Q1=
где V – расход нитрозного газа, проходящего через холодильник- конденсатор, нм3/т;
tвх- температура нитрозного газа на входе в холодильник-конденсатор, оС;
2)Тепло окисления монооксида азота в диоксид:
Q2=
где 57070,05- теплота окисления монооксида азота в диоксид, кДж/кмоль;
3)Тепло образования моногидрата:
Q3=
где 173000-теплота образования азотной кислоты, кДж/кмоль;
10,8-количество сконденсировавшихся паров воды, кг/т;
4)Тепло разбавления моногидрата:
Q4=
где 67,38-количество растворенного моногидрата азотной кислоты,кг;
31600-теплота разбавления моногидрата кислоты, кДж/кмоль;
5)Тепло конденсации воды:
Q5= ;
Где 4939,6-тепло конденсации воды, кДж/кмоль;
Общий приход тепла: Q=1436663,67кДж/т;
Расход тепла:
Рассчитаем теплоемкости компонентов газовой смеси на выходе в холодильник-конденсатор при температуре 65 или 338К.
Теплоемкость кислорода:
Теплоемкость азота:
Теплоемкость воды:
Теплоемкость оксида азота (II):
Теплоемкость оксида азота (IV):
Средняя теплоемкость нитрозного газа на выходе из аппарата:
1)Тепло, уходящее с нитрозным газом:
Q1’= =
где - температура нитрозного газа на выходе из холодильника, 0С;
2)Тепло, уходящее с кислотой:
Q2’ =mk Ck
tk =
где
mk-масса кислоты, кг/т;
Ck-теплоемкость кислоты, кДж/кмоль;
tk- температура кислоты,
3) Теплопотери.
Принимаем, что потери тепла в окружающую среду составляют 3% от общего количества, поступающего в аппарат.
Q3’=
4)Тепло отводимое с охлаждающей водой.
Q4’= Q-(Q1’+ Q2’+ Q3’)=
;
Таблица 3.5.
Тепловой баланс холодильника-конденсатора.
Статьи прихода | кДж/т | % | Статьи расхода | кДж/т | % |
1) Тепло с газами | 670122,29 | 46,64 | 1)Тепло с газами | 571614,62 | 39,79 |
2) Тепло окисления | 140152,83 | 9,76 | 2)Тепло с кислотой | 2534,301 | 0,18 |
3) Тепло образования моногидрата | 83410,71 | 5,81 | 3)Теплопотери | 43099,91 | 2,99 |
4) Тепло разбавления моногидрата | 7950,16 | 0,55 | 4)Тепло, уходящее с водой | 819414,84 | 57,03 |
5) Тепло конденсации воды | 535027,68 | 37,24 | |||
Итого: | 1436663,67 | 100 | Итого: | 1436663,67 | 100 |
Рассчитаем количество воды, необходимой для охлаждения нитрозного газа при данных условиях. Принимаем температуру поступающей воды 40 уходящей воды 50
m=
где -теплоемкость воды, Дж/моль град;
-тепло охлаждающей воды, кДж/т;