Информационные технологии в научных исследованиях

Магистрант

Физического факультета

Кафедры биофизики

Мухортова Анна Владимировна

Руководители:

Ведущий научный сотрудник,

Кандидат биологических наук

Горудко Ирина Владимировна,

Старший преподаватель

Кожич Павел Павлович

Минск – 2010 г.

ОГЛАВЛЕНИЕ

 

ОГЛАВЛЕНИЕ.. 2

СПИСОК ОБОЗНАЧЕНИЙ КО ВСЕЙ ВЫПУСКНОЙ РАБОТЕ.. 3

РЕФЕРАТ НА ТЕМУ «ИСПОЛЬЗОВАНИЕ ИТ В ИССЛЕДОВАНИЯХ БИОФИЗИЧЕСКИХ СВОЙСТВ КЛЕТОК КРОВИ». 4

Введение. 4

Глава 1 Обзор литературы.. 5

1.1 Информационные технологии в научных исследованиях. 5

1.2 Origin®.. 7

Глава 2 Методика исследования. 9

2.1 Объекты и материалы исследования. 9

2.2 Методика выделения нейтрофилов. 9

2.3 Экстракция холестерина из плазматической мембраны нейтрофилов и его количественное определение. 9

2.4 Измерение генерации H2O2 нейтрофилами. 11

2.5 Исследование агрегации нейтрофилов. 11

Глава 3 Результаты исследований и их обсуждение. 12

3.1 Изучение особенностей лектин-индуцированной продукции Н2О2 нейтрофилами с пониженным содержанием холестерина. 12

3.2 Влияние MβCD на лектин-индуцированную агрегацию нейтрофилов. 16

Заключение. 18

Список литературы к реферату. 18

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ К РЕФЕРАТУ.. 19

ИНТЕРНЕТ РЕСУРСЫ В ПРЕДМЕТНОЙ ОБЛАСТИ ИССЛЕДОВАНИЯ.. 20

ДЕЙСТВУЮЩИЙ ЛИЧНЫЙ САЙТ В WWW (ГИПЕРССЫЛКА) 21

ГРАФ НАУЧНЫХ ИНТЕРЕСОВ.. 22

ТЕСТОВЫЕ ВОПРОСЫ ПО ОСНОВАМ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ.. 23

ПРЕЗЕНТАЦИЯ МАГИСТЕРСКОЙ ДИССЕРТАЦИИ.. 24

СПИСОК ЛИТЕРАТУРЫ К ВЫПУСКНОЙ РАБОТЕ.. 25

ПРИЛОЖЕНИЕ 1. 26

 

СПИСОК ОБОЗНАЧЕНИЙ КО ВСЕЙ ВЫПУСКНОЙ РАБОТЕ

ИТ (информационные технологии) – совокупность методов, производственных процессов и программно-технических средств, объединенных в технологическую цепочку, обеспечивающую сбор, хранение, обработку, вывод и распространение информации.

MbCD – метил-бета-циклодекстрин.

РЕФЕРАТ НА ТЕМУ «ИСПОЛЬЗОВАНИЕ ИТ В ИССЛЕДОВАНИЯХ БИОФИЗИЧЕСКИХ СВОЙСТВ КЛЕТОК КРОВИ»

Введение

Бурное развитие информационных технологий (ИТ) за последние два десятилетия вызвало существенные изменения почти всех сфер деятельности человека. Научные исследования начали изменяться под влиянием ИТ задолго до массового внедрения информационных технологий как в повседневный быт, так и в другие сферы профессиональной деятельности. Со временем использование ИТ в процессе получения научных знаний перестало ограничиваться расчетными моделями, и проникло на каждый из этапов научного исследования.

Действительно, на начальном этапе изучения литературы и знакомства с проблемой ключевую роль играет поиск по электронным базам данных статей и монографий по рассматриваемому вопросу. На этапе построения теоретической модели значительную помощь могут оказывать системы аналитических вычислений. ИТ повсеместно используются при обработке экспериментальных данных, а также при оформлении результатов исследования для публикации.

Нет сомнений в том, что создание эффективных средств коммуникации значительно упростило процесс взаимодействия между учеными и научными сообществами в мире. С одной стороны, это привело к упрощению определенных этапов научного исследования и фокусированию на задаче исследования, с другой – к резкому увеличению потока научной информации, иногда не представляющей значительной ценности. С помощью ИТ стало возможным осуществлять поиск необходимых сведений не только в локально доступных источниках, но и в научных базах данных по всему миру. Помимо этого, возникла возможность улучшить проведение координированных исследований в пространственно разнесенных лабораториях.

Таким образом, развитие ИТ способствовало развитию сферы поиска научных данных и взаимодействия между учеными. Также нельзя не учитывать тот факт, что на сегодняшний день как теоретические, так и прикладные исследования требуют применение ряда ИТ на всех этапах проведения.

Особое значение имеет использование ИТ в процессе проведения измерений. Практически вся используемая в научных исследованиях техника основана на применении микроэлектроники. Следовательно, каждый из приборов должен обладать цепями преобразования аналоговой информации, получаемой от исследуемого объекта, в цифровой вид, доступный для обработки.

Данный реферат затрагивает вопросы исследований в области биофизики. Биологические системы активно взаимодействуют с внешней средой, обмениваются энергией и веществом, а также обладают малым временем жизни. Вышеперечисленные факты значительно усложняют получение статистически значимых результатов и требуют использования высокочувствительных и селективных методов, не приводящих к разрушению самой системы. Участие ИТ проявляется на всех этапах исследования – от процесса передачи информации от физического прибора к компьютеру до обработки результатов измерений – и является неотделимым от научного исследования. 

В данном реферате освещается ряд программных продуктов, наиболее часто применяемых в физических исследованиях, и дается некоторое количество примеров их применения в процессе проведения исследований в указанной выше области. 

 Глава 1 Обзор литературы

Информационные технологии в научных исследованиях

Несколько десятилетий назад единственным способом накопления информации по интересующей исследователя тематике был анализ традиционных печатных источников информации – книги, журналы, справочники. Для получения более-менее законченного представления о предмете исследований необходимо тщательно выбирать и анализировать имеющуюся в наличии литературу. Появление сети Интернет за считанные годы изменило представление об источниках информации и процессе поиска.

На сегодняшний день поиск информации в сети Интернет является самым эффективным способом накопления литературы по тематике исследования. В сети Интернет существуют как специализированные базы статей по определенным тематикам, так и общие средства поиска.

Так, среди общих поисковых систем можно отметить Google Scholar. Разнообразие критериев поиска, выделение списка наиболее цитируемых авторов, автоматическое нахождение свободных для доступа публикаций (что особенно актуально, учитывая значительную стоимость подписки на электронные публикации) позволяют сравнительно быстро найти требуемые статьи. Тем не менее, можно отметить некоторую разобщенность выдачи результатов поиска.

Примером специализированной научной поисковой системы является система Scirus, позволяющая осуществлять полнотекстовый поиск по статьям журналов большинства крупных иностранных издательств (порядка 17 млн. статей), статьям в крупных архивах статей и препринтов, научным ресурсам Интернет (более 250 млн. проиндексированных страниц). Система Science Research Portal позволяет осуществлять полнотекстовый поиск в журналах многих крупных научных издательств, таких как Elsevier, Highwire, IEEE, Nature, Taylor & Francis и др. Ищет статьи и документы в открытых научных базах данных: Directory of Open Access Journals, Library of Congress Online Catalog, Science.gov и Scientific News.

Особый интерес для исследователей в области биофизики представляют системы Medline и HighWire Press, позволяющие осуществлять поиск по статьям медицинской тематики. Бесплатной версией базы данных MEDLINE – самой крупной базы данных опубликованной медицинской информации в мире, охватывающей около 75% всех мировых изданий – является PubMed. Эта текстовая база данных медицинских публикаций на английском языке создана на основе раздела биотехнология национальной медицинской библиотеки США (National Library of Medicine, NLM) национальным центром биотехнологической информации (National Center for Biotechnology Information, NCBI) США. На сегодняшний день документировано около 3,800 биомедицинских изданий. Ежегодно база данных PubMed увеличивается на 500.000 документов. Поиск происходит по принципу Medical Subject Headings (MeSH).

Анализ данных последних лет позволяет утверждать, что в настоящее время одним из актуальных направлений медицинской биофизики является изучение процессов модификации функциональной активности клеток крови в присутствие различных физико-химических факторов. Ярким примером проведения исследований по данной тематике является выявление молекулярных механизмов функциональных свойств нейтрофилов и способов их модификации. Нейтрофилы являются центральными участниками воспалительной реакции, которая сопровождает протекание различных патологических процессов – атеросклероза, диабета, рака, болезни Альцгеймера и ишемической болезни сердца. Поэтому глубокое изучение функциональных свойств нейтрофилов и способов их модификации имеет большое значение не только для фундаментальной биологии, но и для практической медицины, постановки правильного диагноза, контроля эффективности лечения, профилактики заболеваний.

Ряд часто встречающихся патологий – тиреотоксикоз, анемия, атеросклероз – протекают на фоне гипо- или гипер- холестеринемии, которая может приводить к изменению доли мембранного холестерина в различных типах клеток. Изменение содержания холестерина в нейтрофилах влечет за собой изменение механических свойств и вязкости их плазматической мембраны, что, в свою очередь, может приводить к модификации функциональной активности клеток, так как свойства и функционирование различных мембранных белков и их комплексов – рецепторов, ферментов, ионных каналов – зависят от состояния мембраны клеток.

На поверхности нейтрофилов экспрессировано значительное количество углеводных структур, которые входят в состав мембранных гликорецепторов и легко выявляются на основании связывания клеток с лектинами. Лектины представляют собой белки неиммунной природы, обладающие свойством обратимо и избирательно связывать углеводные компоненты различных типов гликоконьюгатов, и являются активными стимуляторами функциональных свойств нейтрофилов.

Несмотря на то, что взаимосвязь функциональных свойств нейтрофилов и изменения липидного состава клеточных мембран не вызывает сомнений, данная проблема изучена недостаточно. Исследование роли холестерина в реализации функциональных свойств нейтрофилов при действии лектинов важно не только для понимания механизмов передачи сигналов, но и является ценным для выявления принципиально новых подходов профилактики и лечения социально-значимых заболеваний, связанных с развитием воспалительной реакции и окислительного стресса.

Методики исследования, использованные в данной работе, достаточно хорошо описаны в литературе. Флуоресцентная спектроскопия является хорошо изученным методом исследования биосистем. Теоретические основы флуоресцентной спектроскопии молекул вошли в книгу известного спектроскописта Дж. Лаковича [1]. Флуоресцентная спектроскопия дает информацию о физико-химических свойствах среды, таких как строение молекул, природа химических связей, межмолекулярные взаимодействия, позволяет определить качественно и количественно состав среды. Созданные на основе флуоресцентной спектроскопии, флуориметрические методы анализа позволяют получать информацию о концентрациях веществ в исследуемом образце и оценивать кинетические характеристики химических реакций.

Обработка полученных данных требует специализированного знания программных пакетов обработки, поскольку программное обеспечение, поступающее в комплекте с приборами, зачастую не позволяет осуществить надлежащий и полный анализ получаемых экспериментальных данных.

Так, определение характеристических параметров, численную и статистическую обработку полученных данных, а также графическое представление имеющихся данных (а также последующее оформление их для публикации) удобно производить с использованием следующих программных средств: Microsoft Office Excel, Origin, Mathematica, MatLab и Microsoft Office Word. В данной работе рассмотрим обработку данных с использованием Origin.

 

1.2 Origin®

Origin – пакет программ фирмы Origin Lab Corporation, предназначенный для численного анализа данных и научной графики, работающий под операционной системой Microsoft Windows. В целом Origin ориентирован на исследователя, которому необходимо обрабатывать и визуализировать большие объемы информации (например, данные, получаемые с различных датчиков и т.п.).

Origin поддерживает создание двухмерной и трехмерной графики при помощи готовых шаблонов, доступных для редактирования пользователем. Также возможно создавать новые собственные шаблоны. После создания изображения оно может быть отредактировано с помощью меню и диалогов, вызываемых двойным щелчком мыши на его элементах.

Полученные графики и таблицы можно экспортировать в ряд форматов, таких как PDF, WMF, TIFF, GIF, GPEG и д.р. Кроме того, графические данные, полученные с помощью Origin, можно легко вставить в документы Microsoft Word, CorelDraw, PowerPoint. Импорт данных – еще одна сильная сторона Origin. Доступен не только импорт ASCII-файлов, но и поддержка формата *.xls (формат табличного редактора Microsoft Excel) и других форматов.

Существенным преимуществом программы Origin является то, что для построения графиков сложных функций не требуется навыков программирования, так как интуитивно понятный интерфейс Origin позволяет легко запрограммировать функцию на языке, максимально приближенном к обычной математической записи и выбрать нужный тип графика.

Общая схема построения графиков такова: пользователь выделяет нужные данные, представленные в таблице, выбирает один из десятков типов предлагаемых двух- и трехмерных диаграмм, и система строит диаграмму или график. Настройка диаграмм выполняется в основном в диалоговых окнах, связанных со строящимся объектом.

В пакете Origin есть много возможностей оформления построенных графиков. Существует возможность выбора стиля, толщины, а также цвета линии. Редактирование осей позволяет выбирать начальное и конечное значения шкалы, шаг, с которым на данной шкале будут отображаться численные величины. Можно отобразить на графике невидимые по умолчанию верхнюю и правую шкалы. Кроме всего прочего, возможно также изменение цвета, размера, шрифта и стиля заголовков осей, задание параметров самих осей, а именно, толщины, длины, направления рисок и т.п. Кроме заголовков осей, выбор соответствующей функции позволяет вносить различные текстовые вставки, подписи для графиков и т.п.

С помощью Origin можно проводить численный анализ данных, включая различные статистические операции, обработку сигналов и т.п. Как и Excel, Origin позволяет совершать операции над столбцами таблицы (нормировка и т.п.). Доступна обработка данных с использованием различных стандартных функций или, при необходимости, с использованием функций, создаваемых пользователем [2]. Можно воспользоваться функциями линейного или полиномиального приближения. Помимо их в Origin имеется большой выбор функций (экспонента, уравнение Больцмана и т.п.), служащих для аппроксимации вводимых данных [2].

Origin позволяет проводить различные статистические исследования экспериментальных данных, такие как нахождение среднего и среднеквадратичного отклонения, поиск минимумов и максимумов и т.п. Origin также может сортировать данные отдельных столбцов, нескольких выделенных столбцов, выделенного диапазона рабочего листа или всего рабочего лист (например, по возрастанию, убыванию).

С помощью встроенной функции Screen Reeder можно с высокой точностью определить координаты любой точки графика.

Кроме всего прочего, предоставленная Origin возможность одновременного представления данных различных проектов на одном рисунке с использованием нескольких слоев существенно облегчает сравнительный анализ данных.

Описанные возможности – лишь часть имеющихся в Origin функций. Однако и их в большинстве случаев вполне достаточно для быстрой и удобной обработки экспериментально полученных данных.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: