Расчетное давление газа в амортизаторе
МПа.
Газ давит на шток с силой
кН.
Несоответствие между силой Рш и внешней нагрузкой 528,127 кН объясняется наличием сил трения в буксах. Таким образом, сила трения в одной буксе равна величине
кН.
На верхнем конце штока газ давит на шток с силой
кН.
Следовательно, между сечениями, проходящими через верхнюю и нижнюю буксы, шток сжимается силой
кН;
ниже сечения нижней буксы – силой
кН.
На цилиндр газ воздействует через уплотнение с осевой силой
кН,
растягивающей цилиндр. При построении эпюры Nц, следует учесть также силы Fтр и Sz. Окончательный вид эпюр осевых сил Nц и Nш показан на рис. 25

Рис. 25
Проверочный расчет штока
Вычисляем напряжение в расчетном сечении по формулам

Вначале находим вспомогательные величины:

F – площадь сечения штока;
W – момент сопротивления штока;
кпл - коэффициент пластичности штока.
Для напряжений получим

- нормальные напряжения, направленные вдоль оси z;
- тангенциальные напряжения разрыва цилиндрических элементов от воздействия внутреннего давления;
- радиальные напряжения в цилиндрических элементах;
- касательные напряжения;
Для более опасного варианта (
= - 1296 МПа) имеем эквивалентные напряжения

Коэффициент избытка прочности:
.
Найдем для штока критические напряжения потери устойчивости и предельный изгибающий момент. Из формулы Эйлера
,
R – радиус срединной поверхности цилиндрического элемента;
- толщина цилиндрического элемента.
Так как
, то:

- критическое напряжение по формуле Тетмайера.
Так как максимальное сжимающее напряжение σz = 1296 МПа не превышает σкр, то шток не теряет устойчивость.
При
находим

Мпред - предельный изгибающий момент в рассматриваемом сечении.
Коэффициент избытка прочности
.






