Математические модели в генетике популяции и в теории эволюции

 

Эволюционный процесс можно рассматривать как процесс видового обучения или как процесс поиска оптимального состояния. При этом популяция выступает как регулируемая многопараметрическая система. Кроме того, эволюция может рассматриваться и как процесс группового поведения автоматов. С этой точки зрения, популяция – это совокупность «автоматов» (организмов), которые, взаимодействуя между, собой и с внешней средой, решают свои собственные локальные задачи. Однако в результате такого взаимодействия система в целом решает некоторую интегральную задачу, например, приспособления вида к новой среде обитания. Ясно, что в данном случае речь идет о примере управления за счет локальных взаимодействий, так как у популяции нет централизованного управляющего механизма. Математическая теория эволюции развивалась независимо от теории управления на основе собственных задач и методов (дифференциальные уравнения, теория случайных процессов).

Математическое исследование генетики популяций является одним из важнейших направлений современной теоретической биологии. Основы математической теории генетики популяций были заложены работами Г. Дженингса (1914–1917), С. Райта (1921–1932), Дж. Холдейна (1924–1932) и Р. Фишера (1928, 1930). Классическая работа в этой области принадлежит С.С. Четверикову (1926). В общей форме возникающая здесь задача может быть сформулирована так. Допустим, что данная популяция животных характеризуется определенным распределением генотипов и разной частотой встречаемости тех или иных признаков. Задан характер скрещивания в популяции и относительная жизнеспособность носителей этих признаков при тех или иных условиях. Требуется найти, как изменится в последующих поколениях распределение признаков при существовании популяции в данной (неизменной или меняющейся по определенному закону) среде. Простейший случай такой эволюционной задачи – вопрос о том, с какой скоростью будет происходить вытеснение некоторого исходного гена его аллелем, возникшим в результате мутации и имеющим селекционное преимущество. Основными факторами, влияющими на этот процесс, является частота мутирования и эффективность отбора. Фишер и Райт выяснили также роль размеров популяции и ограничения скрещивания внутри нее. Райт, кроме того, изучал влияние миграций. Роли миграций в изменении генофонда популяций посвящена работа А.Н. Колмогорова, И.Г. Петровского и Н.С. Пискунова (1937). А.Н. Колмогоров (1935) установил также отклонение от формулы Харди‑Вейнберга в условиях ограниченного скрещивания, показав, что существует оптимум частичной изоляции, при котором скорость отбора максимальна. Качественные соображения о существовании такого оптимума были развиты А.А. Малиновским (1934).

 

Идеи Холдейна, Фишера и Райта за последние годы получили развитие в разнообразных направлениях. Так, в работах Н.В. Тимофеева‑Ресовского и Ю.М. Свирежева (1966) установлены механизмы, ведущие к устойчивому существованию полиморфных популяций, а в работах О.С. Кулагиной и А.А. Ляпунова (1966) рассмотрены механизмы дивергенции форм в популяциях.

Разработка математических вопросов генетики популяций интенсивно ведется за рубежом. В ряде работ изучен процесс эволюции при разных вариантах скрещивания, с учетом взаимодействия генов между собой, возрастного и полового состава популяции и т. д. Новое интересное направление развивает в последнее время японский ученый М. Кимура. Он проводит аналогию между эволюцией популяции и движением некоторой динамической системы, а затем, используя эту аналогию, стремится найти для описания эволюции принцип, аналогичный принципу наименьшего действия аналитической механики[251].

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: