Триангулярный индекс и другие показатели

 

Западно-европейские и американские исследователи используют апроксимацию кривой распределения кардиоинтервалов треугольником и вычисляют так называемый триангулярный индекс - интеграл плотности распределения (общее количество кардиоинтервалов) отнесенный к максимуму плотности распределения (АМо). Кроме того, используется построение гистограмм по разностным значениям соседних кардиоинтервалов с апроксимацией их экспотенциальной кривой и вычислением логарифмического коэффициента, а также другие способы апроксимации.

 

5.3. Автокорреляционный анализ.

 

Вычисление и построение автокорреляционной функции динамического ряда кардиоинтервалов направлено на изучение внутренней структуры этого ряда как случайного процесса. Автокорреляционная функция представляет собой график динамики коэффициентов корреляции, получаемых при последовательном смещении анализируемого динамического ряда на одно число по отношению к своему собственному ряду. После первого сдвига на одно значение коэффициент корреляции тем меньше единицы, чем более выражены дыхательные волны. Если в исследуемой выборке доминируют медленноволновые компоненты, то коэффициент корреляции после первого сдвига будет лишь незначительно ниже единицы. Последующие сдвиги ведут к постепенному уменьшению корреляционных коэффициентов. Автокоррелограмма позволяет судить о скрытой периодичности сердечного ритма. В качестве количественных показателей автокоррелограммы вводятся С1 – значение коэффициента корреляции после первого сдвига и С0 – число сдвигов в результате которого значение коэффициента корреляции становиться отрицательным (<0).

 

5.4. Корреляционная ритмография

Сущность метода корреляционной ритмографии заключается в графическом отображении последовательных пар кардиоинтервалов (предыдущего и последующего) в двухмерной координатной плоскости.  При этом по оси абсцисс откладывается величина R-Rn, а по оси ординат – величина R-Rn+1. График и область точек, полученных таким образом (пятна Пуанкаре или Лоренца), называется корреляционной ритмограммой или скаттерграммой (scatter-рассеивание). Этот способ оценки ВСР относится к методам нелинейного анализа и является особенно полезным для случаев, когда на фоне монотонности ритма встречаются редкие и внезапные нарушения (эктопические сокращения и (или) “выпадения” отдельных сердечных сокращений).

При построении скаттерграммы образуется совокупность точек, центр которых располагается на биссектрисе. Расстояние от центра до начала осей координат соответствует наиболее ожидаемой длительности сердечного цикла (Мо). Величина отклонения точки от биссектрисы влево показывает, насколько данный сердечный цикл короче предыдущего, вправо от биссектрисы – насколько он длиннее предыдущего. Предлагается вычислять следующие показатели скаттерграммы:

длина основного (без экстрасистол и артефактов) “облака” (длинная ось эллипса – L) соответствует вариационному размаху. По физиологическому смыслу этот показатель не отличается от SDNN, т.е. отражает суммарный эффект регуляции ВСР, но указывает на максимальную амплитуду колебаний длительности интервалов R-R;

ширина скаттерграммы (перпендикуляр к длинной оси, проведенный через ее середину – w);

площадь скаттерграммы вычисляется по формуле площади эллипса: S = (p×L×w)/4.

Нормальная форма скаттерграммы представляет собой эллипс, вытянутый вдоль биссектрисы. Именно такое расположение эллипса означает, что к дыхательной прибавлена некоторая величина недыхательной аритмии. Форма скаттерграммы в виде круга означает отсутствие недыхательных компонентов аритмии. Узкий овал соответствует преобладанию недыхательных компонентов в общей вариабельности ритма, которая определяется длиной “облака”. Длина овала хорошо коррелировала с величиной HF, а ширина с LF (см. ниже). При аритмиях, когда методы статистического и спектрального анализа вариабельности сердечного ритма малоинформативны или неприемлемы, целесообразно использовать оценку корреляционной ритмограммы (скаттерграммы).

 

5.5. Спектральные методы анализа ВСР

 

Спектральные методы анализа ВСР получили в настоящее время очень широкое распространение. Анализ спектральной плотности мощности колебаний дает информацию о распределении мощности в зависимости от частоты колебаний. Применение спектрального анализа позволяет количественно оценить различные частотные составляющие колебаний ритма сердца и наглядно графически представить соотношения разных компонентов сердечного ритма, отражающих активность определенных звеньев регуляторного механизма. Различают параметрические и непараметрические методы спектрального анализа. К первым относится авторегрессионный анализ, ко вторым – быстрое преобразование Фурье (БПФ) и периодограммный анализ. Обе эти группы методов дают сравнимые результаты.

Параметрические, и в частности авторегрессионные, методы требуют соответствия анализируемого объекта определенным моделям. Общим для всех классических методов спектрального анализа является вопрос применения функции окна (Windowing). Основное назначение окна - уменьшение величины смещения в периодограммных спектральных оценках. Существуют определенные различия спектрального оценивания данных при использовании периодограммного метода с равномерным окном (при 256 значениях RR) и применении различных уровней межсегментного сдвига и различного числа отсчетов на сегмент. Увеличение разрешения при возрастании межсегментного сдвига и числа отсчетов на сегмент влечет за собой появление массы дополнительных пиков в спектре и увеличение амплитуды пиков в правой половине спектра.

При спектральном анализе ВСР важное значение имеет объем анализируемой выборки. При коротких записях (5 минут) выделяют три главных спектральных компоненты. Эти компоненты соответствуют диапазонам дыхательных волн и медленных волн 1-го и 2-го порядка. В западной литературе соответствующие спектральные компоненты получили названия высокочастотных (High Frequency – HF), низкочастотных (Low Frequency – LF) и очень низкочастотных (Very Low Frequency – VLF).

Частотные диапазоны каждого из трех вышеуказанных спектральных компонента являются дискуссионными. По евро-американским рекомендациям (1996) предлагаются следующие диапазоны частот:

Высокочастотный диапазон (дыхательные волны) – 0,4–0,15 Гц (2,5–6,5 сек);

Низкочастотный диапазон (медленные волны 1-го порядка) – 0,15–0,04 Гц (6,5–25 сек);

Очень низкочастотный диапазон (медленные волны 2-го порядка) – 0,04 –0,003 Гц (25 – 333 сек).

При анализе длительных записей выделяют также еще и ультра низкочастотный компонент – Ultra Low Frequency (ULF) с частотами выше 0,003 Гц.

Опыт российских исследований и результаты исследований, проведенных многими зарубежными авторами, показывают необходимость коррекции этих рекомендаций. Это относится главным образом к диапазону VLF. Предлагается следующая скорректированная схема частотных диапазонов при спектральном анализе ВСР:

 

Наименования компонентов спектра Частотный диапазон, в герцах Период в секундах
HF 0,4 – 0,15 2,0 – 6,6
LF 0,15 – 0,04 6,6 – 20,0
VLF 0,04 – 0,015 25,0 – 66,0
ULF Меньше 0,015 Больше 66,0

    

Ограничение диапазона VLF до 0,015 Гц обусловлено тем, что при анализе 5-минутных записей мы фактически надежно можем определять только колебания с периодом в 3-4 раза меньшим, чем длительность регистрации сигналов. Поэтому предложено считать все колебания с периодом более минуты относить к диапазону ULF и уже в нем выделять соответствующие поддиапазоны.

При спектральном анализе обычно для каждого из компонентов вычисляют абсолютную суммарную мощность в диапазоне, среднюю мощность в диапазоне, значение максимальной гармоники и относительное значение в процентах от суммарной мощности во всех диапазонах (Total Power-TP). При этом ТР определяется как сумма мощностей в диапазонах HF, LF и VLF. По данным спектрального анализа сердечного ритма вычисляются следующие показатели: а) индекс централизации – ИЦ (Index of centralization, IC = (HF+LF)/VLF) и индекс вагосимпатического взаимодействия LF/НF.

 

5.6. Другие методы анализа ВСР

 

Цифровая фильтрация. Методы цифровой фильтрации предназначены для быстрого анализа коротких участков записи ЭКГ (менее 5 минут) и позволяют дать количественную оценку периодических компонентов ВСР. Предложено несколько вариантов цифровой фильтрации. Например, это скользящее усреднение по определенному числу последовательных кардиоинтервалов. Для определения медленных волн 1-го порядка применяют усреднение по 5 или 9 кардиоинтервалам. Для выделения медленных волн 2-го порядка – усреднение по 23 или 25 кардиоинтервалам.

Методы нелинейной динамики. Многообразные влияния на ВСР, включая нейрогуморальные механизмы высших вегетативных центров, обусловливают нелинейный характер изменений сердечного ритма, для описания которого требуется использование специальных методов. Для описания нелинейных свойств вариабельности применялись сечение Пуанкаре, кластерный спектральный анализ, графики аттрактора, сингулярное разложение, экспонента Ляпунова, энтропия Колмогорова и др. Все эти методы в настоящее время представляют лишь исследовательский интерес и их практическое применение ограничено. Вместе с тем, следует отметить методику оценки функциональных состояний на основе использования теории хаоса, используемую в приборе “Вита-Ритм-” фирмы “Нейрософт” (г. Иваново).

6. ВОСПРОИЗВОДИМОСТЬ И СРАВНИМОСТЬ ДАННЫХ

 

Постоянно действующие регуляторные механизмы обеспечивают адекватные адаптивные ответы организма на непрерывные изменения условий окружающей среды. Это означает, что функциональное состояние различных звеньев регуляции постоянно изменяется и при повторных исследованиях ВСР невозможно получить полностью идентичные результаты. Поэтому воспроизводимость данных исследования ВСР не может быть 100%. Высокая воспроизводимость означает лишь качественное, но не количественное соответствие двух сравниваемых записей, полученных у одного и того же человека даже через сравнительно небольшой промежуток времени.

При обсуждении вопросов воспроизводимости результатов анализа ВСР следует иметь в виду высокую чувствительность вегетативной нервной системы к внешним и внутренним воздействиям, типологические особенности обследуемого лица и его состояние здоровья. В ряде случаев (начальные стадии некоторых заболеваний, неустойчивость вегетативной регуляции) вообще нельзя ожидать высокой воспроизводимости. Следует также учитывать и суточные изменения вегетативной регуляции. Для обеспечения высокой воспроизводимости данных при исследовании ВСР рекомендуется строго соблюдать методику проведения записей, изложенную в разделе 4.2.

Сравнимость записей и результатов анализа ВСР означает возможность сопоставления данных, получаемых в различных клиниках и учреждениях с помощью разных типов аппаратуры и разных программных средств. Без возможности такого сопоставления невозможно дальнейшее развитие метода анализа ВСР. Речь идет о сравнимости основных (ключевых) показателей статистического и спектрального анализа. Клинико-физиологическая трактовка этих показателей и формирование на их основе новых алгоритмов оценки может и должно быть предметом дальнейших научных исследований. Однако, если ключевые показатели ВСР будут существенно различаться в зависимости от типа применяемой аппаратуры и программных средств, то нельзя говорить ни о каком прогрессе в области анализа ВСР.

Настоящая инструкция по применению различных электрокардиографических систем для анализа ВСР предусматривает использование специальной системы тестирования, которая должна включать набор контрольных файлов, специальную тестирующую программу и специальный банк данных стандартизованных ЭКГ. Все аппаратно-программные комплексы, производимые в России, должны проходить процедуру тестирования на соответствие принятым стандартам анализа ВСР.

В качестве стандартной системы тестирования рекомендуется применение разработанного Московским Институтом Электронной Техники (г. Зеленоград) комплекса “HRV-test”, который включает в себя набор реальных ЭКГ-сигналов и генерируемых ЭКГ-сигналов и результаты их обработки стандартной программой анализа ВСР. В приложении 3 дано описание методики тестирования и соответствующего программного комплекса. Рассматриваются три уровня тестирования:

1) Тестирование системы, выполняющей функции распознавания R- зубцов ЭКГ, измерения длительности интервалов R-R, формирования нормализованного ряда кардиоинтервалов и расчета ключевых (стандартных) показателей ВСР;

  2) Тестирование системы выполняющей только функции формирования нормализованного ряда кардиоинтервалов и расчета ключевых (стандартных) показателей ВСР;

3) Тестирование системы выполняющей только функции расчета ключевых (стандартных) показателей ВСР;

Подобное выделение разных уровней тестирования необходимо для того, чтобы можно было стандартизировать не только полные аппаратно-программные комплексы, но и специализированные программные продукты, предназначенные для анализа ВСР, как в составе серийно выпускаемых приборов, так и автономно работающие с базами данных или отдельно собранными файлами R-R интервалов.

Перечень стандартного набора показателей ВСР представлен в приложении 1, а формулы для их расчета даны в приложении 2.

7. ОЦЕНКА РЕЗУЛЬТАТОВ АНАЛИЗА ВСР

 

Для исследователей и клиницистов, использующих метод анализа ВСР ведущее значение имеет физиологическая и клиническая интерпретация получаемых результатов. Однако в настоящее время в отношении интерпретации результатов анализа ВСР нет единодушного мнения. Вместе с тем для основных показателей ВСР уже сложились определенные клинико-физиологические оценки, которые более или менее однозначно трактуются в большинстве публикаций. Для некоторых показателей существуют оригинальные, но все еще спорные трактовки, которые нуждаются в более тщательном обосновании.

В данном разделе представлены материалы по оценке результатов анализа ВСР, перечислены основные, используемые в России, показатели (см. приложение 3) и дана их клинико-физиологическая интерпретация, основанная на традиционных представлениях о вегетативной регуляции сердца, участии в ней симпатического и парасимпатического отделов, подкоркового сердечно-сосудистого центра и более высоких уровней регуляции. Наряду с оценкой непосредственно получаемых при анализе ВСР показателей, рассматриваются и производные показатели, такие как IC, LF/НF и Ин. Специальное внимание уделяется комплексной оценке функциональных состояний организма по данным ПАРС (показателя активности регуляторных систем).

Следует отметить, что материалы данного раздела инструкции носят лишь рекомендательный характер. Они могут быть особенно полезны начинающим специалистам для правильного использования метода и понимания его возможностей.

 

7.1. Показатели статистического анализа (временной анализ).

 

– СРЕДНЕЕ КВАДРАТИЧНОЕ ОТКЛОНЕНИЕ (СКО, SD). Вычисление СКО является наиболее простой процедурой статистического анализа ВСР. Значения СКО выражаются в миллисекундах (мс). Нормальные значения СКО находятся в пределах 40–80 мс. Однако эти значения имеют возрастно-половые особенности, которые должны учитываться при оценке результатов исследования. Рост или уменьшение СКО могут быть связаны как с автономным контуром регуляции, так и с центральным (как с симпатическими, так и с парасимпатическими влияниями на ритм сердца). При анализе коротких записей, как правило, рост СКО указывает на усиление автономной регуляции, т.е. рост влияния дыхания на ритм сердца, что чаще всего наблюдается во сне. Уменьшение СКО связано с усилением симпатической регуляции, которая подавляет активность автономного контура. Резкое снижение СКО обусловлено значительным напряжением регуляторных систем, когда в процесс регуляции включаются высшие уровни управления, что ведет к почти полному подавлению активности автономного контура. Информацию по физиологическому смыслу аналогичную СКО можно получить по показателю суммарной мощности спектра - ТP. Этот показатель отличается тем, что характеризует только периодические процессы в ритме сердца и не содержит так называемой фрактальной части процесса, т.е. нелинейных и непериодических компонентов.

– RMSSD – показатель активности парасимпатического звена вегетативной регуляции. Этот показатель вычисляется по динамическому ряду разностей значений последовательных пар кардиоинтервалов и не содержит медленноволновых составляющих сердечного ритма. Он отражает активность автономного контура регуляции. Чем выше значение RMSSD, тем активнее звено парасимпатической регуляции. В норме значения этого показателя находятся в пределах 20-50 мс. Аналогичную информацию можно получить по показателю pNN50, который выражает в % число разностных значений больше чем 50 мс.

– ИНДЕКС НАПРЯЖЕНИЯ РЕГУЛЯТОРНЫХ СИСТЕМ (ИН) характеризует активность механизмов симпатической регуляции, состояние центрального контура регуляции. Этот показатель вычисляется на основании анализа графика распределения кардиоинтервалов – вариационной пульсограммы. Активация центрального контура, усиление симпатической регуляции во время психических или физических нагрузок проявляется стабилизацией ритма, уменьшением разброса длительностей кардиоинтервалов, увеличением количества однотипных по длительности интервалов (рост АМо). Форма гистограмм изменяется, происходит ее сужение с одновременным ростом высоты. Количественно это может быть выражено отношением высоты гистограммы к ее ширине (см. выше). Этот показатель получил название индекса напряжения регуляторных систем (ИН). В норме ИН колеблется в пределах 80-150 условных единиц. Этот показатель чрезвычайно чувствителен к усилению тонуса симпатической нервной системы. Небольшая нагрузка (физическая или эмоциональная) увеличивают ИН в 1,5-2 раза. При значительных нагрузках он растет в 5-10 раз. У больных с постоянным напряжением регуляторных систем ИН в покое равен 400-600 условных единиц. У больных с приступами стенокардии и инфарктом миокарда ИН в покое достигает 1000-1500 единиц.

7.2. Показатели спектрального анализа (частотный анализ)

 

– МОЩНОСТЬ ВЫСОКОЧАСТОТНОЙ СОСТАВЛЯЮЩЕЙ СПЕКТРА (ДЫХАТЕЛЬНЫЕ ВОЛНЫ). Активность симпатического отдела вегетативной нервной системы, как одного из компонентов вегетативного баланса, можно оценить по степени торможения активности автономного контура регуляции, за который ответственен парасимпатический отдел. Вагусная активность является основной составляющей ВЧ компонента. Это хорошо отражает показатель мощности дыхательных волн сердечного ритма в абсолютных цифрах и в виде относительной величины (в % от суммарной мощности спектра). Обычно дыхательная составляющая (HF) составляет 15-25% суммарной мощности спектра. Снижение этой доли до 8-10% указывает на смещение вегетативного баланса в сторону преобладания симпатического отдела. Если же величина HF падает ниже 2-3% то можно говорить о резком преобладании симпатической активности. В этом случае существенно уменьшаются также показатели RMSSD и pNN50.

– МОЩНОСТЬ НИЗКОЧАСТОТНОЙ СОСТАВЛЯЮЩЕЙ СПЕКТРА (МЕДЛЕННЫЕ ВОЛНЫ 1-ГО ПОРЯДКА ИЛИ ВАЗОМОТОРНЫЕ ВОЛНЫ). Этот показатель (LF) характеризует состояние системы регуляции сосудистого тонуса. В норме чувствительные рецепторы синокаротидной зоны воспринимают изменения величины артериального давления и афферентная нервная импульсация поступает в сосудодвигательный (вазомоторный) центр продолговатого мозга. Здесь осуществляется афферентный синтез (обработка и анализ поступающей информации) и в сосудистую систему поступают сигналы управления (эфферентная нервная импульсация). Этот процесс контроля сосудистого тонуса с обратной связью на гладкомышечные волокна сосудов осуществляется вазомоторным центром постоянно. Время, необходимое вазомоторному центру на операции приема, обработки и передачи информации колеблется от 7 до 20 секунд; в среднем оно равно 10 секундам. Поэтому в ритме сердца можно обнаружить волны с частотой близкой к 0,1 Гц (10 с), которые получили название вазомоторных. Впервые эти волны наблюдали Майер с соавторами (1931) и поэтому они иногда называются волнами Майера. Мощность медленных волн 1-го порядка определяет активность вазомоторного центра. Переход из положения "лежа" в положение "стоя" ведет к значительному увеличению мощности в этом диапазоне колебаний сердечного ритма. Активность вазомоторного центра падает с возрастом и у лиц пожилого возраста этот эффект практически отсутствует. Вместо медленных волн 1-го порядка, увеличивается мощность медленных волн 2-го порядка. Это означает, что процесс регуляции артериального давления осуществляется при участии неспецифических механизмов путем активации симпатического отдела вегетативной нервной системы. Обычно в норме процентная доля вазомоторных волн в положении "лежа" составляет от 15 до 35-40%. Следует упомянуть также о показателе доминирующей частоты в диапазоне вазомоторных волн. Обычно он находится в пределах 10-12 секунд. Увеличение до 13-14 секунд может указывать на снижение активности вазомоторного центра или на замедление барорефлекторной регуляции.

– МОЩНОСТЬ “ОЧЕНЬ” НИЗКОЧАСТОТНОЙ СОСТАВЛЯЮЩЕЙ СПЕКТРА (МЕДЛЕННЫЕ ВОЛНЫ 2-го ПОРЯДКА). Спектральная составляющая сердечного ритма в диапазоне 0,05–0,015 Гц (20–70 с), по мнению многих зарубежных авторов, характеризует активность симпатического отдела вегетативной нервной системы. Однако в данном случае речь идет о более сложных влияниях со стороны надсегментарного уровня регуляции, поскольку амплитуда VLF тесно связана с психоэмоциональным напряжением. Показано, что VLF отражает церебральные эрготропные влияния на нижележащие уровни и позволяет судить о функциональном состоянии мозга при психогенной и органической патологии мозга (Н.Б. Хаспекова, 1996). Есть данные, что VLF является чувствительным индикатором управления метаболическими процессами и хорошо отражает энергодефицитные состояния (А.Н. Флейшман, 1999). Высокий по сравнению с нормой уровень VLF можно трактовать как гиперадаптивное состояние, сниженный уровень VLF указывает на энергодефицитное состояние. Мобилизация энергетических и метаболических резервов при функциональных воздействиях может отражаться изменениями мощности спектра в VLF-диапазоне. При увеличении мощности VLF в ответ на нагрузку можно говорить о гиперадаптивной реакции, при ее снижении о постнагрузочном энергодефиците. Несмотря на условный и во многом еще спорный характер подобной интерпретации изменений VLF она может быть полезной при исследованиях как здоровых людей, так и пациентов с различными состояниями, связанными с нарушением метаболических и энергетических процессов в организме. Таким образом, VLF характеризует влияние высших вегетативных центров на сердечно-сосудистый подкорковый центр и может использоваться как надежный маркер степени связи автономных (сегментарных) уровней регуляции кровообращения с надсегментарными, в том числе с гипофизарно-гипоталамическим и корковым уровнем. В норме мощность VLF составляет 15-30% суммарной мощности спектра.

 

7.3. Комплексная оценка функционального состояния

 

Комплексная оценка вариабельности сердечного ритма предусматривает диагностику функциональных состояний (но не заболеваний). Изменения вегетативного баланса в виде активации симпатического звена рассматриваются как неспецифический компонент адаптационной реакции в ответ на различные стрессорные воздействия, Одним из методов оценки таких реакций является вычисление показателя активности регуляторных систем (ПАРС). Он вычисляется в баллах по специальному алгоритму, учитывающему статистические показатели, показатели гистограммы и данные спектрального анализа кардиоинтервалов. ПАРС позволяет дифференцировать различные степени напряжения регуляторных систем и оценивать адаптационные возможности организма (Р.М. Баевский, 1970). Вычисление ПАРС осуществляется по алгоритму, учитывающему следующие пять критериев:

А. Суммарный эффект регуляции по показателям частоты пульса (ЧП).

Б. Суммарная активность регуляторных механизмов по среднему квадратичному отклонению – SD (или по суммарной мощности спектра – TP).

В. Вегетативный баланс по комплексу показателей: Ин, RMSSD,HF,IC.

Г. Активность вазомоторного центра, регулирующего сосудистый тонус, по мощности спектра медленных волн 1-го порядка (LF).

Д. Активность сердечно-сосудистого подкоркового нервного центра    или надсегментарных уровней регуляции по мощности спектра медленных волн 2-го порядка (VLF).

Значения ПАРС выражаются в баллах от 1 до 10. На основании анализа значений ПАРС могут быть диагностированы следующие функциональные состояния:

1. Состояние оптимального (рабочего) напряжения регуляторных систем, необходимое для поддержания активного равновесия организма со средой (норма ПАРС = 1–2).

2. Состояние умеренного напряжения регуляторных систем, когда для адаптации к условиям окружающей среды организму требуются дополнительные функциональные резервы. Такие состояния возникают в процессе адаптации к трудовой деятельности, при эмоциональном стрессе или при воздействии неблагоприятных экологических факторов (ПАРС = 3–4).

3. Состояние выраженного напряжения регуляторных систем, которое связано с активной мобилизацией защитных механизмов, в том числе повышением активности симпатико-адреналовой системы и системы гипофиз-надпочечники (ПАРС = 4–6).

4. Состояние перенапряжения регуляторных систем, для которого характерна недостаточность защитно-приспособительных механизмов, их неспособность обеспечить адекватную реакцию организма на воздействие факторов окружающей среды. Здесь избыточная активация регуляторных систем уже не подкрепляется соответствующими функциональными резервами (ПАРС = 6–7).

5. Состояние истощения (астенизации) регуляторных систем, при котором активность управляющих механизмов снижается (недостаточность механизмов регуляции) и появляются характерные признаки патологии. Здесь специфические изменения отчетливо преобладают над неспецифическими (ПАРС = 7–8).

6. Состояние “полома” адаптационных механизмов (срыв адаптации), когда доминируют специфические патологические отклонения и способность адаптационных механизмов к саморегуляции частично или полностью нарушена (ПАРС = 8–10).

При оценке значений ПАРС условно выделяются три зоны функциональных состояний для наглядности представленных в виде “светофора”: ЗЕЛЕНЫЙ – означает, что все в порядке, не требуется никаких специальных мероприятий по профилактике и лечению. ЖЕЛТЫЙ – указывает на необходимость проведения оздоровительных и профилактических мероприятий. Наконец, КРАСНЫЙ показывает, что требуется вначале диагностика, а затем и лечение возможных заболеваний.

Выделение зеленой, желтой и красной зон здоровья позволяет характеризовать функциональное состояние человека с точки зрения риска развития болезни. Для каждой ступени “лестницы состояний” предусмотрен “диагноз” функционального состояния по степени выраженности напряжения регуляторных систем. Кроме того, имеется возможность отнесения обследуемого к одному из 4-х функциональных состояний по принятой в донозологической диагностике классификации (Р.М. Баевский, А.П. Берсенева, 1997):

- Состояние нормы или состояние удовлетворительной адаптации (ПАРС = 1–3),

- Состояние функционального напряжения (ПАРС = 4–5),

- Состояние перенапряжения или состояние неудовлетворительной адаптации (ПАРС = 6–7),

- Состояние истощения регуляторных систем или срыв адаптации (ПАРС = 8–10).

Необходимо отметить, что ПАРС не имеет аналогов в зарубежных исследованиях. Недостатком ПАРС является то, что он позволяет получать лишь дискретные оценки функциональных состояний, что недостаточно при динамическом контроле. Для обеспечения непрерывной шкалы оценок могут быть использованы математические модели как количественные зависимости между набором числовых признаков (значений показателей ВСР) и функциональными состояниями организма (12).

 

 

7.4. Оценка результатов анализа ВСР при проведении функциональных проб

 

Специального внимания требует оценка результатов анализа ВСР при проведении функциональных проб. Здесь необходима разработка отдельных медицинских инструкций по каждой функциональной пробе. Некоторые общие рекомендации по интерпретации показателей ВСР при функциональных пробах состоят в следующем:

1. Важнейшее значение имеет оценка функционального состояния организма (вегетативный баланс, степень напряжения регуляторных систем и т.д.) в исходном периоде (фон) до начала функционального воздействия. Интерпретация данных на разных этапах функциональной пробы должна проводиться, прежде всего, путем сравнения с исходным состоянием.

2. Во всех функциональных пробах существует переходный процесс между исходным состоянием и новым функциональным состоянием, формирующимся в процессе проведения пробы. Этот переходный процесс имеет различный характер и различную длительность при разных функциональных пробах. Выделение переходного процесса из общей записи и его оценка специальными методами является одной из важных проблем функционального тестирования. Нередко именно в переходном процессе содержится наиболее ценная информация о состоянии регуляторных механизмов.

3. Под влиянием функциональных воздействий формируется новое функциональное состояние, которое не является устойчивым. Это особенно необходимо учитывать, анализируя динамику показателей ВСР, отражающих тонкие взаимосвязи между различными звеньями регуляторного механизма. Поэтому целесообразно выделять для оценки различные этапы функциональной пробы.

4. Следует различать, по крайней мере, два этапа функциональной пробы: этап (или период) непосредственного воздействия на организм соответствующего фактора и этап (или период) восстановления. Между окончанием воздействия и началом восстановления также имеется переходный процесс, которые требует распознавания, выделения и специальной оценки.

5. При оценке показателей ВСР на разных этапах функциональной пробы рекомендуется оценивать не только их средние значения, но и динамику изменений, и синхронизацию этих изменений.


8. ОСНОВНЫЕ НАПРАВЛЕНИЯ ДАЛЬНЕЙШЕГО РАЗВИТИЯ МЕТОДОВ АНАЛИЗА ВСР

 

На современном этапе практического использования методов анализа ВСР в прикладной физиологии и клинической медицине представленные выше подходы к физиологической и клинической интерпретации данных позволяют эффективно решать многие задачи диагностического и прогностического профиля, оценки функциональных состояний, контроля эффективности лечебно-профилактических воздействий и.т.п. Однако, возможности этой методологии далеко не исчерпаны и ее развитие продолжается. Ниже дается краткий перечень некоторых направлений дальнейшего развития методов анализа ВСР, которые разрабатываются главным образом в России. К их числу относятся:

1. Изучение медленных волн 2-го порядка (VLF) и ультрамедленноволновых компонентов спектра сердечного ритма (ULF) – колебаний на частотах ниже 0,01 гц (100 с), включая минутные и часовые волны (ультрадианные ритмы);

2. Развитие методологии вариационной пульсометрии или гистографического анализа вариабельности сердечного ритма;

3. Использование вариабельности сердечного ритма для оценки уровня стресса, степени напряжения регуляторных систем;

4. Исследование вариабельности сердечного ритма у детей и подростков, включая влияние школьных нагрузок и возрастно-половые аспекты;

5. Использование методов анализа вариабельности сердечного ритма в космической медицине, что открывает новые направления для применения этого метода в медицине экстремальных воздействий и различных областях прикладной физиологии;

6. Развитие клинических направлений использования метода: а) в хирургии - контроль анестезии, б) в неврологии - дифференциальная оценка морфологических и функциональных поражений, в) в онкологии - попытки оценки степени метаболических нарушений и др.;

7. Разработка и организация промышленного выпуска различных приборов, аппаратов и автоматизированных систем для анализа ВСР с целью их практического использования в практике здравоохранения и в научных исследованиях.


Несомненно перспективно изучение кросс-корреляционных отношений вариабельности одновременно нескольких физиологических параметров, а именно: кросс-корреляционный анализ частоты дыхания и высокочастотной части спектра ВСР; кросс-корреляционный анализ скорости распространения пульсовой волны (сфигмограммы) и показателей спектрального анализа в области низких частот (LF), кросс-корреляционный анализ ВСР (LF) и величины сердечного выброса (показателей центральной гемодинамики), возможно, кросс-корреляционный анализ ВСР и ЭЭГ. Фрактальный анализ между показателями ВСР (относительно быстрые процессы) и более медленными биологическими процессами (например, w- потенциал).

 

 


Приложение 1

 

 

Перечень основных показателей вариабельности сердечного ритма

 

 

№ пп Краткие обозначения показателей Наименования показателей Физиологическая интерпретация
1 ЧП Частота пульса Средний уровень функционирования системы кровообращения
2 SDNN Стандартное отклонение полного массива кардиоинтервалов Суммарный эффект вегетативной регуляции кровообращения
3 RMSSD Квадратный корень суммы разностей последовательного ряда кардиоинтервалов Активность парасимпатического звена вегетативной регуляции¦  
4 pNN50 Число пар кардиоинтервалов с разностью более 50 мс. в % к общему числу кардиоинтервалов в массиве  Показатель степени преобладания парасимпатического звена регуляции над симпатическим (относительное значение)
5 CV Коэффициент вариации полного массива кардиоинтервалов Нормированный показатель суммарного эффекта регуляции
6 MxDMn   Разность между максимальным и минимальным значениями кардиоинтервалов Максимальная амплитуда регуляторных влияний
7 Mo Мода Наиболее вероятный уровень функционирования сердечно-сосудистой системы
8 AMo Амплитуда моды Условный показатель активности симпатического звена регуляции
9 SI Стресс индекс (Индекс напряжения регуляторных систем) Степень напряжения регуляторных систем (степень преобладания активности центральных механизмов регуляции над автономными)
10 CC1 Значение первого коэффициента автокорреляционной функции Степень активности автономного контура регуляции
11 CC0 Число сдвигов автокорреляционной функции до получения значения коэффициента корреляции меньше нуля Степень активности центрального контура регуляции
12 TP Суммарная мощность спектра ВСР в мс-2 Суммарный абсолютный уровень активности регуляторных систем
13 HF, (%) Мощность спектра высокочастотного компонента вариабельности в % от суммарной мощности колебаний Относительный уровень активности парасимпатического звена регуляции
14 LF, (%) Мощность спектра низкочастотного компонента вариабельности в % от суммарной мощности колебаний Относительный уровень активности вазомоторного центра
15 VLF, (%) Мощность спектра очень низкочастотого компонента вариабельности в % от суммарной мощности колебаний Относительный уровень активности симпатического звена регуляции
16 HFav  Среднее значение мощности спектра высокочастотного компонента ВСР в мс-2 Средний абсолютный уровень активности парасимпатического звена вегетативной регуляции
17 LFav Среднее значение мощности спектра низкочастотного компонента ВСР в мс-2 Средний абсолютный уровень активности вазомоторного центра
18 VLFav Среднее значение мощности спектра очень низкочастотного компонента ВСР в мс-2 Средний уровень активности симпатического звена вегетативной регуляции (преимущест-венно надсегментарных отделов)
19 (LF/HF)av Отношение средних значений низкочастотного и высокочастотного компонента ВСР Относительная активность подкоркового симпатического нервного центра
20 IC Индекс централизации Степень централизации управления ритмом сердца (преобладание активности центрального контура регуляции над автономным)

 

 

Приложение 2

Расчетные формулы для вычисления основных показателей вариабельности сердечного ритма

 

 

Существует три формата представления данных для математического анализа ВСР:

1) динамический ряд NN интервалов – NNi, i = 1,2,…,n;

2) данные, вычисленные на основе разницы между NN-интервалами;

3) новый ряд дискретных значений xi, i = 1,2,…,N. Построение нового ряда основано на положении, что ВСР задается непрерывной функцией от времени – x(t), определенной на множестве элементарных событий – моментах появления R зубцов. Значения функции в эти моменты равны величинам соответствующих NN-интервалов. Значения функции в промежутках времени между моментами появления R зубцов рассчитываются методом сплайновой кубической интерполяции. Ряд строится квантованием функции x(t) с шагом 250 мс.

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: