Электрическое поле диполя

Рассмотрим поле простейшей системы точечных зарядов. Простейшей системой точечных зарядов является электрический диполь. Электрическим диполем называется совокупность равных по величине, но противоположных по знаку двух точечных зарядов –q и +q, сдвинутых друг относительно друга на некоторое расстояние. Пусть – радиус-вектор, проведенный от отрицательного заряда к положительному. Вектор

называется электрическим моментом диполя или дипольным моментом, а вектор – плечом диполя. Если длина пренебрежимо мала по сравнению с расстоянием от диполя до точки наблюдения, то диполь называется точечным.

Вычислим электрическое поле электрического точечного диполя. Поскольку диполь точечный, то безразлично в пределах точности расчета от какой точки диполя отсчитывается расстояние r до точки наблюдения. Пусть точка наблюдения А лежит на продолжении оси диполя (рис. 1.13). В соответствии с принципом суперпозиции для вектора напряженности, напряженность электрического поля в этой точке будет равна

 

,

Если диполь поместить в однородное электрическое поле, образующие диполь заряды +q и –q окажутся под действием равных по величине, но противоположных по направлению сил и .

Рис. 14.2.

Эти силы образуют пару, плечо которой равно l ·sin a, т.е. зависит от ориентации диполя относительно поля. Модуль каждой из сил равен q×E. Умножив его на плечо, получим величину момента пары сил, действующей на диполь:

, (14.1)

где р – электрический момент диполя.

Формулу (14.1) можно записать в векторном виде:

. (14.2)

Вращающий момент стремится повернуть диполь так, чтобы его дипольный момент установился по направлению поля.

Чтобы увеличить угол между векторами и на 2 a, нужно совершить против работу сил, действующих на диполь в электрическом поле:

.

Эта работа идет на увеличение потенциальной энергии W, которой обладает диполь в электрическом поле:

. (14.3)

Интегрируя (14.3) получим выражение для энергии диполя в электрическом поле:

.

Наконец, полагая const равной нулю, получаем

. (14.4)

Выбор Сonst= 0соответствует положению диполя перпендикулярно полю. Наименьшее значение энергии, равное –рЕ, получается при ориентации диполя по направлению поля, наибольшее, равное рЕ, - при ориентации против поля.

В неоднородном поле силы, действующие на заряды диполя, не одинаковые по величине. При малых размерах диполя силы и можно считать коллинеарными. Предположим, что поле быстрее всего изменяется в направлении х, совпадающем с направлением в том месте, где расположен диполь. Положительный заряд диполя смещен относительно отрицательного в направлении х на величину .

Рис. 14.3.

Поэтому напряженность поля в точках, где помещаются заряды, отличается на .

Следовательно, результирующая + сил, действующих на диполь, будет отлична от нуля. Проекция этой результирующей на ось х, очевидно равна:

. (14.5)

Таким образом, в неоднородном поле на диполь кроме вращательного момента (14.2) действует сила (14.5), под действием которой диполь либо втягивается в область более сильного поля (угол a острый), либо выталкивается из нее (угол a тупой).

ТИПЫ ПОЛЯРИЗАЦИИ ДИЭЛЕКТРИКОВ. ПОЛЯРИЗОВАННОСТЬ, ЕЕ СВЯЗЬ С ПОВЕРХНОСТНОЙ ПЛОТНОСТЬЮ СВЯЗАННЫХ ЗАРЯДОВ. ТЕОРЕМА ГАУССА ДЛЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ В ДИЭЛЕКТРИКЕ. ВЕКТОР ЭЛЕКТРИЧЕСКОГО СМЕЩЕНИЯ (ЭЛЕКТРИЧЕСКОЙ ИНДУКЦИИ).

· Электронная — смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10−15 с). Не связана с потерями.

· Ионная — смещение узлов кристаллической решетки под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10−13 с, без потерь.

· Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.

· Электронно-релаксационная — ориентация дефектных электронов во внешнем электрическом поле.

· Ионно-релаксационная — смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.

· Структурная — ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.

· Самопроизвольная (спонтанная) — возникает в отсутствие внешнего электрического поля. Наблюдается в материалах, состоящих из отдельных доменов (областей). В каждом из доменов имеет своё, отличное от других доменов, направление, в результате чего суммарный дипольный момент материала равен нулю. При наложении внешнего электрического поля дипольные моменты доменов ориентируются вдоль поля. Возникающая при этом поляризация проявляет существенно нелинейные свойства даже при малых значениях внешнего поля; наблюдается явление гистерезиса. Такие диэлектрики (сегнетоэлектрики) отличаются очень высокими значениями диэлектрической проницаемости (от 900 до 7500 у некоторых видов конденсаторной керамики).

· Резонансная — ориентация частиц, собственные частоты колебания которых совпадают с частотами внешнего электрического поля.

· Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объёмных зарядов, особенно при высоких градиентах напряжения; имеет большие потери и является поляризацией замедленного действия.

Поляризация диэлектриков (за исключением резонансной) максимальна в статических электрических полях. В переменных полях, в связи с наличием инерции электронов, ионов и электрических диполей, вектор электрической поляризации зависит от частоты.

Теорема Гаусса для электростатического поля в диэлектрике формулируется следующим образом: поток вектора смещения электростатического поля в диэлектрике сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов, т.е.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: