Розрахунок і вибір потужності двигуна для регулятора подачі долота, перевірка вибору

При підйомі інструмента електродвигун працює з повним навантаженням, причому коефіцієнт потужності складає 0,75-0,80. При допоміжних роботах двигун працює з неповним навантаженням, коефіцієнт потужності коливається в межах 0,4-0,5. Таким чином, велику частину часу електропривод бурильної лебідки працює з заниженим коефіцієнтом потужності.

Ця обставина ще раз підтверджує велике значення ретельного розрахунку потужності електродвигунів для приводу бурильної лебідки.

Розрахунок потужності і вибір електродвигуна для приводу лебідки проводиться в два етапи - спочатку по основних параметрах лебідки, користуючись наближеними формулами, визначають приблизне значення необхідної потужності, а потім, після вибору конкретного типу двигуна, роблять перевірочний розрахунок потужності методом середньоквадратичного струму.

В даний час для визначення потужності електродвигуна піднімальної лебідки з відомими технічними даними застосовують ряд формул. Найбільше простою, але в той же час і найменш точною, є загальновідома формула потужності, необхідна для підйому вантажу:

 

 [кВт] (1)


ηл - к.п. д. передач від вала двигуна до вала барабана; можна прийняти

 

η л = 0,77÷ 0,8;

ηт - к.п. д. талевої системи; можна прийняти при оснастці:

5Х6..... - ηт = 0,80

Так як середня швидкість тягової гілки каната Vcp і середня швидкість підйому вантажу V пов'язані співвідношенням , де m - число робочих струн оснастки талевої системи, то формула (1) може бути приведена до вигляду

 

[кВт] (2)

 

Максимальна вага вантажу:

 

Q = H · m + mн = 5000 · 34 + 32000 = 202000 кг

 

де Н = 5000 м – довжина свердловини;

m = 34 кг – маса 1 м бурильної труби;

 mн = 32000 кг – маса “важкого низу”.

 

Середня швидкість намотки каната на барабан

 

  м/с

 

де Dcp - середній діаметр намотки каната на барабан лебідки, м;

 – число обертів барабана лебідки в хвилину.

Середній діаметр намотки каната на барабан дорівнює

 

  м

 

де D1 - діаметр першого робочого ряду каната, м;

D2 - діаметр останнього робочого ряду каната, м.

Діаметр першого робочого ряду каната можна визначити по формулі

D1 = Dб + dк + 1,865 · dк = 0,75 + 0,032 + 1,865 · 0,032 = 0,84 [ м ]

 

(при розрахунках прийнято, що на бочці барабана постійно є один ряд каната, що у роботі не бере участь).

Діаметр останнього ряду каната

D2 = Dб + dк + 1,865 · dк · i = 0,75 + 0,032 + 1,865 · 0,032 · 5 =1,08 [ м ]

 

де Dб = 0,75 діаметр бочки барабана, м;

dк = 32 мм – діаметр талевого каната;

і - число рядів каната, що намотуються.

 

Вибиремо асинхронний двигун з наступними номінальними даними:

Тип Pн, кВт Uн,В nном,об/хв Ін,А ККДн,% cosφ
4AH280S6 90,00 380 978 165.6 92.5 0.89

 

Iп/Iн Мпн Мкн r1,Ом x1,Ом r2,Ом x2,Ом Jд,кг*м2
6,0 1,2 2,0 0,0425 0,1594 0,0289 0,1727 2,50

Перевірка по максимальному моменту:

 c-1

 

Номінальний момент

 

  Нм

 

Момент лебідки:

 

 Нм

 

λ = 2,0 – коефіцієнт перевантаження двигуна;

Максимальний момент двигуна:

 Нм

 

Отже Mн > Mдв – вибраний двигун підходить.

Система частотного керування асинхронними двигуном:

З існуючих автоматичних систем регульованого електроприводу змінного струму найбільш перспективною є система частотного керування асинхронним двигуном із короткозамкненим ротором.

Найкраще вимогам частотного керування асинхронним двигуном відповідає перетворювач частоти з явно вираженою ланкою постійного струму,в склад якого входить статичний керований випрямляч КВ та автономний інвертор напруги АІН з синусоїдною широтно-імпульсною модуляцією напруги. Істотною перевагою АІН є незалежність вихідної напруги від частоти і моменту статичного навантаження. Вихідна напруга визначається лише напругою живлення інвертора. Це значно спрощує формування необхідного закону частотного керування,особливо,коли напруга регулюється тільки в залежності від зміни частоти. Формування механічних характеристик асинхронного двигуна при частотному керуванні підпорядковане задачі забезпечення необхідної перевантажувальної здатності і жорсткості характеристик в усьому діапазоні регулювання швидкості. Задана перевантажувальна здатність забезпечується вибором відповідного закону регулювання або співвідношення напруги й частоти автономного інвертора,які треба регулювати незалежно.

Тому силова частина перетворювача складається з керованого випрямляча КВ, який перетворює напругу живлення промислової частоти в постійну напругу керованого автономного інвертора,який перетворює постійну напругу у трифазну напругу регульованої частоти.

Система частотного керування АД реалізується за принципом підпорядкованого керування з першим внутрішнім контуром струму,другим контуром напруги та частоти за зовнішнім контуром контролю ваги бурового інструменту.

Сигналами інформаційного забезпечення є: напруга завдання частоти обертання двигун;напруга від’ємного зворотного зв’язку випрямленого струму перетворювача КВ; напруга від’ємного зворот нього зв’язку за вихідною напругою і напруга від’ємного зворот нього зв’язку, що відтворює осьове навантаження.

Регулювання випрямленого струму (струму статора) здійснюється з допомогою регулятора струму РС, який через систему імпульсно-фазового керування СІФКв діє на кут відкривання тиристорів КВ. Регулятор РС зібраний по схемі ПІ-регулятора. На його входи подаються сигнали зворотного зв’язку за струмом та сигнал завдання з регулятора напруги РН. Регулятор РС забезпечує в статичних режимах точну відповідність струму статора сигналу завдання незалежно від вихідної частоти АІН. На вході регулятора напруги РН відбувається додавання сигналів завдання регулятора напруги і від’ємного зворотного зв’язку за напругою. Вихідний сигнал РН є вхідним для регуляторів струму РС та частоти РЧ,чим забезпечується закон керування U/f=const.Таким чином регулятори РС та РЧ підпорядковані регулятору напруги РН.

Під час пуску двигуна регулятор РН знаходиться в насиченні,а ПІ-регулятор РС підтримує стопорне значення струму.Регулятор частоти РЧ реалізований на перетворювачі частота-напруга. Вихідні імпульси з РЧ поступають на схему (лічильник), яка розподіляє їх на шість каналів комутації транзисторів АІН. Транзисторний АІН має суттєву перевагу перед тиристорним тим, що він є повністю керованим і виключається ланка примусової комутації,що покращує енергетичні показники установки.

Автоматичний пуск системи здійснюється шляхом подачі сигналу завдання на один із входів пропорційного регулятора осьового навантаження РОН. На другий вхід подається напруга від’ємного зворотного зв’язку з пристрою визначення осьового навантаження. Під час пуску та роботи регулятора подачі,коли Uон=0,швидкість двигуна буде визначатися установкою завдання Uзавд. При зміні осьового навантаження і появі напруги з приростом зменшиться вихідний сигнал регулятора РОН і,відповідно,сигналу завдання на регулятор ПРН,що приведе до сповільнення привідного двигуна і перехід його на меншу усталену швидкість. Подальша зміна швидкості відбудеться тільки при зміні значення напруги зворотного зв’язку. Захист:при зменшенні величини осьового навантаження на долото і відповідному збільшенні напруги до граничного значення, яке задається уставкою “Уст.ВИМК.”, відбудеться вимкнення двигуна.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow