Допоміжні перетворення

 

Зазначимо перш за все, що достатньо обмежитися випадком многочлена 4-ї степені під коренем, так як до нього легко приводиться випадок, коли під коренем многочлен 3-ї степені.

Розглянемо, взагалі, алгебраїчне рівняння непарної степені (з дійсними коефіцієнтами)

 

.

 

При достатньо великих по абсолютній величині значеннях x многочлен має знак старшого члена, тобто при додатному x – знак , а при від’ємному x – обернений знак. Так, як многочлен це неперервна функція, то, міняючи знак, він в проміжній точці необхідно перетворюється в 0. Звідси: всяке алгебраїчне рівняння непарної степені (з дійсними коефіцієнтами) має принаймні один дійсний корінь.

Дійсно, многочлен 3-ї степені  з дійсними коефіцієнтами необхідно має дійсний корінь, скажемо λ, і, відповідно, допускає дійсне розкладання

 

 

Підстановка (або ) і здійснює потрібне приведення

 

 

В першу чергу ми будемо розглядати лише диференціали, що мають корінь із многочленів 4-ї степені.

По відомій теоремі алгебри, многочлен четвертої степені з дійсними коефіцієнтами може бути представленим у виді добутку двох квадратних трьохчленів з дійсними коефіцієнтами:

 

 (5)

 

Постараємось тепер необхідною підстановкою знищити в обох трьохчленах відразу члени першої степені.

Якщо р = р’, то наша ціль досягається простою підстановкою . Нехай тепер ; в цьому випадку ми скористаємось дробно-лінійною підстановкою


 

Можливість встановити дійсні і при чому різні значення для коефіцієнтів μ і ν зумовлена нерівністю

 

 (6)

 

Нехай же тепер трьохчлени (5) обидва мають дійсні корені, скажемо, перший – корені α і β, а другий корені γ і δ. Підставляючи

 

 

можна переписати (6) у вигляді

 

 (6ґ)

 

а для здійснення цієї нерівності достатньо лише потурбуватися, щоб корені трьохчленів не перемежались (наприклад, щоб було α > β > γ > δ), що в наших можливостях.

Таким чином, належно вибравши μ і ν, за допомогою вказаної підстановки ми отримаємо

 

 

що можна також (якщо виключити випадки, коли який-небудь з коефіцієнтів M, N, M’, N’ виявляються нулем) переписати у виді


 

при А, m і m’ відмінних від нуля.

Цей інтеграл можна звести, з точністю до інтеграла від раціональної функції, до такого

 

 

Розкладемо тепер раціональну функцію R*(t) на два доданки

 

 

Перший доданок не міняє свого значення при заміні t на –t, значить, зводиться до раціональної функції від : ; другий же при вказаній заміні міняє знак, і тому має вид Розглянутий інтеграл представиться в формі суми інтегралів

 

 

Але другий із них підстановкою відразу зводиться до елементарного інтегралу

 


і береться в кінцевому виді. Таким чином, подальшому дослідженню підлягає тільки інтеграл

 

 (7)

 





Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: