Теорема Теллегена. Баланс мощности

 

Теорема Теллегена является одной из наиболее общих теорем теории электрических цепей. Рассмотрим граф произвольной электрической цепи, содержащей n в ветвей и n у узлов. Для согласованных направлений напряжений и токов ветвей теорема Теллегена гласит: сумма произведений напряжений uk и токов ik всех ветвей графа, удовлетворяющих законам Кирхгофа, равна нулю.

.

Докажем эту теорему на примере цепи, изображенной на рис. 1. 7.

 


Рис. 1.7.

 

Составим сумму произведений  для каждой из ветвей:

 

.

 

Согласно второго закона Кирхгофа должны выполняться условия:

 

 

Подставим данные выражения напряжений в сумму:

 

 

так как выражения, стоящие в скобках, согласно первого закона Кирхгофа равны нулю, это и доказывает теорему. Необходимо подчеркнуть, что поскольку теорема Теллегена следует непосредственно из законов Кирхгофа, то она справедлива для любых электрических цепей: линейных и нелинейных, активных и пассивных; цепей, параметры которых изменяются во времени (параметрических цепей). В общем случае эта теорема справедлива и для случая попарных произведений  и  разных ветвей, если для них выполняются законы Кирхгофа.

Из теоремы Теллегена вытекает ряд следствий, важнейшим из которых является баланс мощности. Действительно, произведение  представляет собой мгновенную мощность k -ветви, поэтому в соответствии с формулой алгебраическая сумма мощностей всех ветвей цепи равняется нулю. Если выделить ветви с независимыми источниками, то баланс мощности можно сформулировать следующим образом: алгебраическая сумма мощностей, отдаваемых независимыми источниками, равняется алгебраической сумме мощностей, потребляемых остальными ветвями электрической цепи.

Пример. Составит баланс мощности для цепи, изображенной на рис. 1.8.

 

Рис. 1.8.

 

Алгебраическая сумма мгновенных мощностей, развиваемых источниками напряжения и тока:

 

.

 

Потребляемая мощность с учетом законов Ома:

 

 

В соответствии с балансом мощностей:

 

.

 

Следует отметить, что при определении  произведение ei, берется со знаком "+", если направления задающего напряжения e и тока i совпадают с друг другом, и со знаком "–" в противном случае. Аналогичное правило знаков для источников тока: если напряжение на зажимах источника совпадает с направлением задающего тока i0, берется знак "+", а если напряжение направлено навстречу задающему току — знак "–". Баланс мощности выражает не что иное, как закон сохранения энергии в электрической цепи.

 


Принцип дуальности

 

Сопоставление уравнений, составленных по первому и второму законам Кирхгофа, а также соотношений для последовательного и параллельного соединения элементов свидетельствуют о существовании таких цепей, у которых токи в одной цепи изменяются как напряжения в другой цепи. Уравнения таких цепей сходны по форме и отличаются лишь обозначениями. Эти цепи называют дуальными.

Дуальными являются, например, цепи, схемы которых изображены на рисунке 1.9, поскольку напряжение в одной схеме изменяется по такому же закону, как ток в другой схеме.

 


Рис. 1.9.

 

Действительно, для схемы рис. 1.9, а согласно первому закону Кирхгофа:

 

 или .

 

Учитывая соотношения между напряжением и током для элементов:

 

 и ,

 

получим уравнение для напряжения цепи:

 

                                         (1)

 

Для схемы рис. 1.9, б по второму закону Кирхгофа  или . Учитывая соотношения  и  получим уравнение для тока в цепи:

 

                                          (2)

 

Уравнения (1) и (2) сходны по форме. Эти обыкновенные линейные неоднородные дифференциальные уравнения 1-го порядка. Второе уравнение получается из первого, если заменить u на i, С на L, G на R, i0 на e.

Приведенные пары величин также называются дуальными величинами.

Таким образом, дуальными являются напряжение и ток, емкость и индуктивность, проводимость и сопротивление, источник тока и источник напряжения. Параллельному соединению элементов исходной схемы соответствует последовательное соединение дуальных элементов в дуальной цепи.

Дуальные величины приведены в таблице 1.1.

 

Таблица 1.1.

1-я группа величин 2-я группа величин
ток напряжение
напряжение ток
проводимость сопротивление
емкость индуктивность
индуктивность емкость
задающий ток Э. Д. С.

 

Следовательно, чтобы получить цепь, дуальную заданной, необходимо в простейших случаях параллельное соединение элементов заменить последовательным, элемент проводимости – сопротивлением, емкость – индуктивностью, индуктивность – емкостью, источник тока – источником напряжения.

Для цепи, схема которой изображена на рис. 1.10, а, дуальной будет цепь – рис. 1.10, б.

 


Рис. 1.10.

 

Уравнение для напряжения в первой цепи и уравнение для тока во второй цепи будут отличаться лишь обозначениями. Если получено решение одного из уравнений, то в новых дуальных обозначениях это же будет решением второго уравнения.

Принцип дуальности (двойственности) гласит: если для данной электрической цепи справедливы некоторые законы, уравнения или соотношения, то они будут справедливы и для дуальных величин в дуальной цепи.

В этом и заключается содержание принципа дуальности. Использование принципа дуальности позволяет сократить выкладки и формулировки. Например, результаты анализа цепи (рис. 1.10, а), именуемой параллельным колебательным контуром, можно использовать для дуальной цепи – последовательного колебательного контура (рис. 1.10, б) путем замены всех величин дуальными. Тогда напряжение на элементе индуктивности (емкости) последовательного контура будет изменяться по такому же закону, как ток в элементе емкости (индуктивности) параллельного контура, напряжение на сопротивлении R – как ток в элементе G.

 





Заключение

 

Использование принципа дуальности на практике позволяет в два раза сократить работу по исследованию схем или, наоборот, расширить область применения найденных решений в два раза применив их также и для дуальных цепей. В данной лекции может быть использована дуальная формулировка теоремы замещения (дуальная формулировка дана в лекции).

В теории электрических цепей показывается, что для всех цепей, схемы которых можно изобразить на листе бумаги, не допуская пересечения соединительных проводников (планарные цепи), можно найти соответствующие дуальные схемы. В этих схемах будут иметь место указанные выше соответствия между элементами цепей и способами их соединения, а также и между величинами, которые являются дуальными.

Методика нахождения дуальных схем в общем случае может быть достаточно сложной. Однако для простейших примеров она может быть рассмотрена.



Литература

 

1. Белецкий А. Ф. Теория линейных электрических цепей. – М.: Радио и связь, 1986.

2. Бакалов В. П. и др. Теория электрических цепей. – М.: Радио и связь, 1998.

3. Качанов Н. С. и др. Линейные радиотехнические устройства. М.: Воен. издат., 1974.

4.  В. П. Попов Основы теории цепей – М.: Высшая школа, 2000


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: