Пробой газообразных диэлектриков

Развитие процесса ударной ионизации приводит к пробою газа, в этот момент ток в газе резко возрастает, а напряжение стремится к нулю.

где А – постоянный коэффициент;

P – давление газа, Па;

d – толщина газа в месте пробоя, м.

С уменьшением давления и толщины газа пробивное напряжение уменьшается, но пройдя минимум, начинает снова возрастать. Область разряженного газа – резко уменьшается количество атомов и молекул, являющихся объектом ионизации, число носителей заряда. Область малых расстояний между электродами – сокращение длины пути и частицы не могут накапливать энергию для процесса ударной ионизации.

I. Пробой в однородном электрическом поле происходит сразу в виде искры, которая может переходить в электрическую дугу.

II. Пробой в неоднородном электрическом поле проходит ряд стадий:

1. Неполное электрическое разрушение газа у электрода-острия, т.к. у его поверхности наибольшая напряжённость электрического поля.

2. Коронирующий разряд у поверхности электрода с наименьшим радиусом (видимая электрическая корона светло-фиолетового свечения, сопровождаемая шипением и образование озона О3 и оксида азота NO, которые являются окислителями).

3. Коронирующий разряд переходит в искровой, т.е. полное электрическое разрушение газа.

После снятия напряжения пробитый промежуток восстанавливается..

ЭЛЕКТРОПРОВОДНОСТЬ И ПРОБОЙ ЖИДКИХ ДИЭЛЕКТРИКОВ

 

Электропроводность жидких диэлектриков.

Чистые жидкие диэлектрики обладают электропроводимостью обусловленной перемещением в них ионов, которые образуются в результате диссоциации (распада) молекул примесей (воды, кислот и др.), а частично и молекул самого диэлектрика.

Загрязнённые жидкие диэлектрики, находящиеся в эксплуатации, кроме ионной электропроводимости обладают ещё и моллионной. Она обусловлена перемещением электрически заряженных коллоидных (диаметр частицы 10-6 м) частиц воды, смолистых веществ и примесей, образующихся в результате старения диэлектрика.

Все масла в процессе их эксплуатации находятся под воздействием повышенных температур, электрического поля, а также соприкасаются с металлическими частями электрооборудования, а в некотором электрооборудовании соприкасаются с атмосферным воздухом. Это вызывает старение масла, в основе которого лежит окисление. При старении в масле образуются твёрдые смолообразные примеси, нерастворимые и растворимые в горячем масле, которые выпадаю в виде осадка на обмотках и других частях, которые затрудняют теплоотвод. В процессе старения в масле образуются кислоты и влага.

Что бы замедлить старение масел, в них водят вещества, задерживающие окисление (ионол 0,1-0,5%, замедляет старение в 2-3 раза) – ингибиторы. Однако присадка ингибиторов не может полностью предохранить масло от старения.

Электроизоляционные масла, следует хранить и перевозить в сухой герметичной таре, перекачивать по чистым металлическим трубопроводам (резиновые шланги растворяясь, загрязняют масло). В процессе эксплуатации масло необходимо защищать от проникновения в него воздуха и влаги.

С повышение температуры увеличивается количество и подвижность носителей заряда (уменьшается вязкость масла) и электропроводность увеличивается.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: