Общая характеристика учебного предмета

I. Пояснительная записка

Рабочая программа по математике для 1- 4 классов составлена на основе федерального государственного образовательного стандарта (приказ Министерства образования и науки РФ от 06.10.2009г. № 373 «Об утверждении федерального государственного образовательного стандарта начального общего образования»), примерной образовательной программы начального общего образования на основе авторской программы Рудницкой В.Н. Москва «Вентана – Граф» 2013 год.

Общая характеристика учебного предмета

В начальной школе изучение математики имеет особое значение в развитии младшего школьника.

Особенность обучения в начальной школе состоит в том, что именно на данной ступени у учащихся начинается форми­рование элементов учебной деятельности. На основе этой дея­тельности у ребёнка возникают теоретическое сознание и мышление, развиваются соответствующие способности (рефлексия, анализ, мысленное планирование); происходит становление потребности и мотивов учения. С учётом сказан­ного в данном курсе в основу отбора содержания обучения по­ложены следующие наиболее важные методические принци­пы: анализ конкретного учебного материала с точки зрения его общеобразовательной ценности и необходимости изуче­ния в начальной школе; возможность широкого применения изучаемого материала на практике; взаимосвязь вводимого ма­териала с ранее изученным; обеспечение преемственности с дошкольной математической подготовкой и содержанием следующей ступени обучения в средней школе; обогащение ма­тематического опыта младших школьников за счёт включения в курс дополнительных вопросов, традиционно не изучавших­ся в начальной школе.

Особенности содержания обучения и методических подходов к реализации содержания предмета математики.

Формирование первоначальных представлений о натураль­ном числе начинается в 1 классе. При этом последователь­ность изучения материала такова: учащиеся знакомятся с на­званиями чисел первых двух десятков, учатся называть их в прямом и в обратном порядке; затем, используя изученную последовательность слов (один, два, три,..., двадцать), учатся пересчитывать предметы, выражать результат пересчитыва­ния числом и записывать его цифрами.

На первом этапе параллельно с формированием умения пе­ресчитывать предметы начинается подготовка к решению арифметических задач, основанная на выполнении практиче­ских действий с множествами предметов. При этом арифмети­ческая задача предстаёт перед учащимися как описание неко­торой реальной жизненной ситуации; решение сводится к про­стому пересчитыванию предметов. Упражнения подобраны и сформулированы таким образом, чтобы у учащихся накопился опыт практического выполнения не только сложения и вы­читания, но и умножения и деления, что в дальнейшем суще­ственно облегчит усвоение смысла этих действий.

На втором этапе внимание учащихся привлекается к чис­лам, данным в задаче. Решение описывается словами: «пять и три — это восемь», «пять без двух — это три», «три по два — это шесть», «восемь на два — это четыре». Ответ задачи пока также находится пересчитыванием. Такая словесная форма решения позволяет подготовить учащихся к выполнению стандартных записей решения с использованием знаков дей­ствий.

На третьем этапе после введения знаков +, -, •,:, = учащи­еся переходят к обычным записям решения задач.

Таблица сложения однозначных чисел и соответствую­щие случаи вычитания изучаются в 1 классе в полном объё­ме. При этом изучение табличных случаев сложения и вычи­тания не ограничивается вычислениями в пределах чисел первого десятка: каждая часть таблицы сложения (прибавле­ние чисел 2, 3, 4, 5,...) рассматривается сразу на числовой области 1-20.

Особенностью структурирования программы является ран­нее ознакомление учащихся с общими способами выполнения арифметических действий. При этом приоритет отдаётся письменным вычислениям. Устные вычисления ограничены лишь простыми случаями сложения, вычитания, умножения и деления, которые без затруднений выполняются учащимися в уме. Устные приёмы вычислений часто выступают как част­ные случаи общих правил.

Обучение письменным приёмам сложения и вычитания на­чинается во 2 классе. Овладев этими приёмами с двузначными числами, учащиеся легко переносят полученные умения на трёхзначные числа (3 класс) и вообще на любые многознач­ные числа (4 класс).

 Письменные приёмы выполнения умножения и деления включены в программу 3 класса. Изучение письменного алго­ритма деления проводится в два этапа. На первом этапе пред­лагаются лишь такие случаи деления, когда частное является однозначным числом. Это наиболее ответственный и трудный этап — научить ученика находить одну цифру частного. Овла­дев этим умением (при использовании соответствующей методики), ученик легко научится находить каждую цифру частно­го, если частное — неоднозначное число (второй этап).

В целях усиления практической направленности обучения к арифметическую часть программы с 1 класса включён во­прос об ознакомлении учащихся с микрокалькулятором и его использовании при выполнении арифметических расчётов.

Изучение величин распределено по темам программы та­ким образом, что формирование соответствующих умений производится в течение продолжительных интервалов вре­мени.

С первой из величин (длиной) дети начинают знакомиться и 1 классе: они получают первые представления о длинах пред­метов и о практических способах сравнения длин; вводятся единицы длины — сантиметр и дециметр. Длина предмета из­меряется с помощью шкалы обычной ученической линейки. Одновременно дети учатся чертить отрезки заданной длины (и сантиметрах, в дециметрах, в дециметрах и сантиметрах). Во 2 классе вводится понятие метра, а в 3 классе — километра и миллиметра и рассматриваются важнейшие соотношения между изученными единицами длины.

Понятие площади фигуры — более сложное. Однако его усвоение удаётся существенно облегчить и при этом добиться прочных знаний и умений благодаря организации большой подготовительной работы. Идея подхода заключается в том, чтобы научить учащихся, используя практические приёмы, на­ходить площадь фигуры, пересчитывая клетки, на которые она разбита. Эта работа довольно естественно увязывается с изучением таблицы умножения. Получается двойной выиг­рыш: дети приобретают необходимый опыт нахождения пло­щади фигуры (в том числе прямоугольника) и в то же время за счёт дополнительной тренировки (пересчитывание клеток) быстрее запоминают таблицу умножения.

Этот (первый) этап довольно продолжителен. После того как дети приобретут достаточный практический опыт, начи­нается второй этап, на котором вводятся единицы площади: квадратный сантиметр, квадратный дециметр и квадратный метр. Теперь площадь фигуры, найденная практическим путём (например, с помощью палетки), выражается в этих единицах. Наконец, на третьем этапе, во 2 классе, т. е. раньше, чем это делается традиционно, вводится правило нахождения площади прямоугольника. Такая методика позволяет добиться хоро­ших результатов: с полным пониманием сути вопроса учащие­ся осваивают понятие «площадь», не смешивая его с понятием «периметр», введённым ранее.

Программой предполагается некоторое расширение пред­ставлений младших школьников об измерении величин: в про­грамму введено понятие о точном и приближённом значениях величины. Суть вопроса состоит в том, чтобы учащиеся пони­мали, что при измерениях с помощью различных бытовых приборов и инструментов всегда получается приближённый результат; поэтому измерить данную величину можно только с определённой точностью.

В курсе созданы условия для организации работы, направленной на подготовку учащихся к освоению в основной школе элементарных алгебраических понятий: переменная, выражение с переменной, уравнение. Эти термины в курс не вводятся, однако рассматриваются разнообразные выражения, равенства и неравенства, содержащие «окошко» (1-2 классы) и буквы латинского алфавита (3-4 классы), вместо которых подставляются те или иные числа.

На первом этапе работы с равенствами неизвестное число, обозначенное буквой, находится подбором, на втором — в ходе специальной игры «в машину», на третьем — с помощью пра­вил нахождения неизвестных компонентов арифметических действий.

Обучение решению арифметических задач с помощью со­ставления равенств, содержащих буквы, ограничивается рас­смотрением отдельных их видов, на которых иллюстрируется суть метода.

В соответствии с программой учащиеся овладевают многи­ми важными логико-математическими понятиями. Они знако­мятся, в частности, с математическими высказываниями, с ло­гическими связками «и»; «или»; «если..., то»; «неверно, что...», со смыслом логических слов «каждый», «любой», «все», «кроме», «какой-нибудь», составляющими основу логической формы предложения, используемой в логических выводах. К окончанию начальной школы ученик будет отчётливо пред­ставлять, что значит доказать какое-либо утверждение, овладе­ет простейшими способами доказательства, приобретёт уме­ние подобрать конкретный пример, иллюстрирующий некоторое общее положение, или привести опровергающий пример, научится применять определение для распознавания того или иного математического объекта, давать точный ответ на по­ставленный вопрос и пр.

Важной составляющей линии логического развития учени­ка является обучение (уже с 1 класса) действию классифика­ции по заданным основаниям и проверка правильности его выполнения.

В программе чётко просматривается линия развития гео­метрических представлений учащихся. Дети знакомятся с наи­более распространёнными геометрическими фигурами (круг, многоугольник, отрезок, луч, прямая, куб, шар, конус, цилиндр, пирамида, прямоугольный параллелепипед), учатся их разли­чать. Большое внимание уделяется взаимному расположению фигур на плоскости, а также формированию графических уме­ний — построению отрезков, ломаных, окружностей, углов, многоугольников и решению практических задач (деление от­резка пополам, окружности на шесть равных частей и пр.).

Большую роль в развитии пространственных представле­ний играет включение в программу (уже в 1 классе) понятия об осевой симметрии. Дети учатся находить на рисунках и по­казывать пары симметричных точек, строить симметричные фигуры.

Важное место в формировании у учащихся умения рабо­тать с информацией принадлежит арифметическим текстовым задачам. Работа над задачами заключается в выработке умения не только их решать, но и преобразовывать текст: изменять одно из данных или вопрос, составлять и решать новую задачу с изменёнными данными и пр. Форма предъявления текста за­дачи может быть разной (текст с пропуском данных, часть дан­ных представлена на рисунке, схеме или в таблице). Нередко перед учащимися ставится задача обнаружения недостаточно­сти информации в тексте и связанной с ней необходимости корректировки этого текста.

 

Изучение математики в начальной школе направлено на достижение следующих целей:

- математическое развитие младшего школьника- формирование способности к интеллектуальной деятельности (логическое и знаковосимволическое мышление), пространственного воображения, математической речи; умение строить рассуждения, выбирать аргументацию, различать обоснованные и не- обоснованные суждения, вести поиск информации (фактов, оснований для упорядочения, вариантов и др.);

- освоение начальных математических знаний- понимание значения величин и способов их измерения; использование арифметических способов для разрешения сюжетных ситуаций; формирование умения решать учебные и практические задачи средствами математики; работа с алгоритмами выполнения арифметических действий;

- воспитание интереса к математике, стремление использовать математические знания в повседневной жизни.

Задачи, реализуемые педагогом в процессе обучения математике, следующие:

1. Формировать у обучающихся научное представление о математике.

2. Развивать логическое и образное мышление, представление о математике как части окружающего мира.

3. Формировать вычислительные навыки.

4. Формировать умения находить более правильное и рациональное решение задач и числовых выражений.

5. Создать условия для формирования интереса к математике, используя знания в жизни.

 




double arrow
Сейчас читают про: