Вопрос 2 Микроциркулярное русно. Микроциркуляция и физиология капилляркого кровотока транскапиллярный обмен его виды и механизмы

Билет 1

Вопрос Строение и функции клеточных мембран. Транспорт веществ через клеточные мембраны.

Мембрана играет большую роль в жизнедеятельности клетки. Одной из функций мембраны является барьерно-транспортная: мембрана определяет потоки веществ, идущих через нее, микросреду, т. е. состав цитоплазмы. Мембрана принимает участие в генерации ПД (потенциала действия), в генерации энергии (например, мембраны митохондрий). Мембраны осуществляют функцию межклеточного взаимодействия — например, передачу сиг- пала от одного нейрона к другому.

ТРАНСПОРТ ВЕЩЕСТВА ЧЕРЕЗ БИОЛОГИЧЕСКИЕ МЕМБРАНЫ

Классификация. Различают прямой и опосредованный транспорт. Прямой — без участия переносчиков, опосредованный — с их участием. Например, перенос глюкозы с участием переносчика. Опосредованный транспорт осуществляется с затратой энергии (активный транспорт) или без затраты энергии (облегченная диффузия). Прямой транспорт всегда идет по типу пассивного транспорта.

Из сказанного ясно, что второй вариант классификации — это выделение двух основных видов транспорта веществ — пассивного и активного.

Третий вариант классификации — транспорт с изменением архитектуры мембраны (экзоцитоз, эндоцитоз) или без изменения структуры мембраны (все остальные виды транспорта).

Четвертый вариант классификации — это транспорт, сопряженный с переносом двух веществ (котранспорт), который может протекать по типу симлорта (два вещества идут в одном направлении — например Na + глюкоза) или по типу антипорта (одно вещество идет в клетку, второе — из клетки или наоборот — Na и К).

Пассивный транспорт. Различают два его вида — простую диффузию и облегченную диффузию. Простая диффузия идет в соответствии с законом Фика — по химическому или электрохимическому градиенту. Например, в клетке натрия 14 ммоль, а в среде — 140 ммоль, в этом случае пассивный поток должен быть направлен в клетку. В живых системах этот вид транспорта используется ограниченно. Кислород, углекислый газ, вода—они могут таким образом осуществлять переход из клетки в среду или наоборот.

Облегченная диффузия проходит по двум вариантам — с участием переносчиков или при наличии специализированных каналов. Обнаружено, что в мембранах, имеются специальные белки-переносчики, которые, специфически связываясь с переносимой молекулой, способствуют ее переносу по градиенту концентрации. Таким образом, затраты энергии не происходит, а путь через мембрану облегчается за счет наличия специфического переносчика.

Ионные каналы — это интегральные белки мембраны, которые выполняют функцию

транспортирующей частицы для соответствующего иона. Селективность канала обеспечивается за счет геометрии канала за счет внутриканально расположенных заряженных частиц. Каждый ионный канал имеет устье, селективный фильтр, ворота и механизм управления воротами.

Калиевые каналы тоже достаточно селективны — в основном пропускают ионы калия. Они блокируются тетраэтиламмонием. Процессы инактивации у них выражены слабо.

Кальциевые каналы — имеют все атрибуты ионного канала (устья, воротный механизм, фильтр). Блокируются ионами марганца, никеля, кадмия (двухвалентные ионы), а также лекарственными веществами — верапамилом, нифедипином, дильтиаземом, которые используются в клинической практике.

Активный транспорт: различают первично-активный транспорт, при котором энергия затрачивается на перенос данного вещества против градиента его концентрации, а также вторично-активный транспорт, при котором энергия на перенос данного вещества (например, молекулы глюкозы) используется за счет механизма переноса другого вещества (например, натрия).

Первично-активный транспорт широко представлен в организме. Это калий-натриевый насос, натрий-водородный обменный механизм и т.д. Суть его состоит в том, что в мембране имеется переносчик, обладающий АТФ-азной активностью, т. е. он способен расщеплять АТФ и высвобождать энергию, которая и затрачивается на перенос вещества.

Вторично-активный транспорт. В основном представлен в энтероцитах, в эпителии почек. Суть его состоит в следующем (на примере переноса молекулы глюкозы). Молекула глюкозы должна войти в клетку, где ее концентрация намного выше, чем в среде. Для того, чтобы это произошло, необходимы затраты энергии. Но тратится энергия, которая ранее была затрачена на перенос натрия.

Эндоцитоз и экэоцитоз. Это варианты транспорта, при которых меняется архитектура мембран. Он осуществляется с затратой энергии. Эндоцитоз — это введение крупномолекулярных частиц из среды в клетку. Один его вариант — фагоцитоз, другой пиноцитоз. Пиноцитоз представляет собой способ усвоения клеткой белковой молекулы без се предварительного гидролиза. Такой механизм, например, имеет место у новорожденных, которые с молоком матери получают антитела (иммуноглобулины), через эитероциты попадающие в организм ребенка, будучи совершенно ненарушенными и способными к выполнению своих функций. Экзоцитоз — это выделение крупных молекул из клетки. Пример тому — выделение квантов медиатора из везикулы в синапсе.

Вопрос 2 Микроциркулярное русно. Микроциркуляция и физиология капилляркого кровотока транскапиллярный обмен его виды и механизмы.

Принцип строения микроциркуляторного русла состоит в следующем: от артериолы по направлению к венуле отходит магистральный сосуд или магистральный капилляр. От этого магистрального капилляра отходят под углом истинные капилляры, которые несут кровь к другому магистральному капилляру. Число таких истинных капилляров огромно. Именно через эти капилляры осуществляется транскапиллярный обмен. В месте ответвления истинного капилляра от магистрального капилляра располагается прекапиллярный сфинктер — несколько гладкомышечных клеток, которые будучи в сокращенном состоянии, вызывают прекращение тока крови по истинному капилляру. Проходимость или функционирование капилляра определяется многими факторами, в том числе состоянием прекапил-лярных сфинктеров, уровнем гидростатического давления в артериоле, уровнем венозного оттока. Для быстрого обходного оттока крови из артериолы в венозную систему существуютартериовенозные анастомозы, благодаря которым кровь может пойти в веиулу, минуя магистральные капилляры и истинные капилляры. Капилляры. В среднем диаметр многих капилляров составляет 3—5 мкм, а длина их достигает 750 мкм. Интенсивность капилляризации тканей, т. е. количество капилляров в расчете на массу ткани —различна.

Одним из факторов, определящим возможности транскапиллярного обмена, является проницаемость капиллярной стенки для различных веществ, мигрирующих из крови в ткань и наоборот. Все капилляры представляют собой трубку, стенка которой состоит из однослойного эндотелия и базилярной мембраны. Мышечные элементы в капиллярах отсутствуют. По строению эндотелиального каркаса все капилляры условно делят на 3 класса или вида:

1)    Капилляры с непрерывной стенкой («закрытые» капилляры) —эндотелиалыше клетки тесно прилегают друг к другу, не оставляя зазоров между клетками. Капилляры данного типа широко представлены в гладких и скелетных мышцах» в сердечной мышце, в соединительной ткани, в легких и ЦНС.

2)    Капилляры с фенестрами (окошечками) или фенестрнрованные (окончатые).

Капилляры этого типа способны пропускать вещества, диаметр которых достаточо ве лик. Такие капилляры расположены в почечных клубочках, в слизистый кишечник

3)    Капилляры с прерывистой стенкой — между соседними эндотелиальными клетками имеются щели, через которые сводобно могут проходить крупные частицы, в том числе форменные элементы крови. Такие капилляры расположены в костном мозге, печени, селе зенке. Их наличие обеспечивает свободный выход форменных элементов из сосуда в ткань и наоборот.

В капиллярах большого круга кровообращения транскапиллярный обмен совершается через достаточно жесткий гистогематический барьер, реализуемый с участием капилляров с непрерывной стенкой.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: