Инструкция по выполнению лабораторной работы

Лабораторная работа № 21

ИЗУЧЕНИЕ ИНТЕРФЕРЕНЦИИ И ДИФРАКЦИИ СВЕТА

Цель работы: экспериментально изучить явление интерференции и дифракции.

Студент должен:

- уметь: анализировать состав электромагнитных излучений; обрабатывать результаты измерений; объяснять полученные результаты и делать выводы.

- знать: принцип Гюйгенса; физическую сущность явления интерференции, дифракции, поляризации и дисперсии света; действие дифракционной решетки.

Обеспеченность занятия

Приборы и материалы: стаканы с раствором мыла, кольцо проволочное с ручкой, капроновая ткань, компакт-диск, лампа накаливания, штангенциркуль, две стеклянные пластины, лезвие, пинцет, капроновая ткань.

Раздаточные материалы: методические рекомендации для выполнения лабораторных работ студентами по дисциплине «Физика».

Краткие теоретические материалы по теме лабораторной работы

           1. Интерференция – явление характерное для волн любой природы: механических, электромагнитных. "Интерференция волн – сложение в пространстве двух (или нескольких) волн, при котором в разных его точках получается усиление или ослабление результирующей волны”. Для образования устойчивой интерференционной картины необходимы когерентные (согласованные) источники волн. Когерентными называются волны, имеющие одинаковую частоту и постоянную разность фаз. условия максимумовусловия минимумов, где k=0; ± 1; ± 2; ± 3;… (разность хода волн равна четному числу полуволн) Волны от источников S1 и S2 придут в точку С в одинаковых фазах и "усилят друг друга”. - фазы колебаний - разность фаз А=2Хmax – амплитуда результирующей волны., где k=0; ± 1; ± 2; ± 3;… (разность хода волн равна нечетному числу полуволн). Волны от источников S1 и S2 придут в точку С в противофазах и "погасят друг друга”. - фазы колебаний - разность фаз А=0 – амплитуда результирующей волны.

          Интерференционная картина – регулярное чередование областей повышенной и пониженной интенсивности света. Интерференция света – пространственное перераспределение энергии светового излучения при наложении двух или нескольких световых волн. Следовательно, в явлениях интерференции и дифракции света соблюдается закон сохранения энергии. В области интерференции световая энергия только перераспределяется, не превращаясь в другие виды энергии. Возрастание энергии в некоторых точках интерференционной картины относительно суммарной световой энергии компенсируется уменьшением её в других точках (суммарная световая энергия – это световая энергия двух световых пучков от независимых источников).

           Светлые полоски соответствуют максимумам энергии, темные – минимумам.

2. Дифракция – явление отклонения волны от прямолинейного распространения при прохождении через малые отверстия и огибании волной малых препятствий. Условие проявления дифракции: d <, где d – размер препятствия, - длина волны. Размеры препятствий (отверстий) должны быть меньше или соизмеримы с длиной волны. Существование этого явления (дифракции) ограничивает область применения законов геометрической оптики и является причиной предела разрешающей способности оптических приборов. Дифракционная решетка – оптический прибор, представляющий собой периодическую структуру из большого числа регулярно расположенных элементов, на которых происходит дифракция света. Штрихи с определенным и постоянным для данной дифракционной решетки профилем повторяются через одинаковый промежуток d (период решетки). Способность дифракционной решетки раскладывать падающий на нее пучек света по длинам волн является ее основным свойством. Различают отражательные и прозрачные дифракционные решетки. В современных приборах применяют в основном отражательные дифракционные решетки. Условие наблюдения дифракционного максимума:

Описание работы

           Обычно интерференция наблюдается при наложении волн, испущенных одним и тем же источником, пришедших в данную точку разными путями.Вследствие дифракции свет отклоняется от прямолинейного распространения (например, вблизи краев препятствий).

Инструкция по выполнению лабораторной работы

           Опыт 1. Опустите проволочную рамку в мыльный раствор. Пронаблюдайте и зарисуйте интерференционную картину в мыльной пленке. При освещении пленки белым светом (от окна или лампы) возникает окрашивание светлых полос: вверху – синий цвет, внизу – в красный цвет. С помощью стеклянной трубки выдуйте мыльный пузырь. Пронаблюдайте за ним. При освещении его белым светом наблюдают образование цветных интерференционных колец. По мере уменьшения толщины пленки кольца, расширяясь, перемещаются вниз.

           Опыт 2. Тщательно протрите стеклянные пластинки, сложите их вместе и сожмите пальцами. Из-за неидеальности формы соприкасающихся поверхностей между пластинками образуются тончайшие воздушные пустоты, дающие яркие радужные кольцеобразные или замкнутые неправильной формы полосы. При изменении силы, сжимающей пластинки, расположение и форма полос изменяются как в отраженном, так и в проходящем свете. Зарисуйте увиденные вами картинки.

           Опыт 3. Положите горизонтально на уровне глаз компакт-диск. Что вы наблюдаете? Объясните наблюдаемые явления. Опишите интерференционную картину.

           Опыт 4. Возьмите с помощью пинцета лезвие безопасной бритвы и нагрейте его над пламенем горелки. Зарисуйте наблюдаемую картину.

           Опыт 5. Посмотрите сквозь капроновую ткань на нить горящей лампы. Поворачивая ткань вокруг оси, добейтесь четкой дифракционной картины в виде двух скрещенных под прямым углом дифракционных полос. Зарисуйте наблюдаемый дифракционный крест.

           Опыт 6. Пронаблюдайте две дифракционные картины при рассмотрении нити горящей лампы через щель, образованную губками штангенциркуля (при ширине щели 0,05 мм и 0,8 мм). Опишите изменение характера интерференционной картины при плавном повороте штангенциркуля вокруг вертикальной оси (при ширине щели 0,8 мм). Этот опыт повторите с двумя лезвиями, прижав их друг к другу. Опишите характер интерференционной картины.

1. Запишите выводы. Укажите, в каких из проделанных вами опытов наблюдалось явление интерференции? дифракции?

 

Контрольные вопросы

1. Почему мыльные пузыри имеют радужную окраску? (Опыт 1)

2. Какую форму имеют радужные полосы? (Опыт 1)

3. Почему окраска пузыря все время меняется? (Опыт 1)

4. Почему в отдельных местах соприкосновения пластин наблюдаются яркие радужные кольцеобразные или неправильной формы полосы? (Опыт 2)

5. Почему с изменением нажима изменяются форма и расположение полученных интерференционных полос? (Опыт 2)

6. Какое явление вы наблюдали? Как его можно объяснить? (Опыт 4)

7. Какие цвета, и в каком порядке появляются на поверхности лезвия при его нагревании? (Опыт 4)

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: