Изменение температуры воздуха с высотой

В тропосфере температура воздуха с высотой понижается, как отмечалось, в среднем на 0,6 ºС на каждые 100 м высоты. Однако в приземном слое распределение температуры может быть различным: она может и уменьшаться, и увеличиваться, и оставаться постоянной. Представление о распределении температуры с высотой дает вертикальный градиент температуры (ВГТ):

Значение ВГТ в приземном слое зависит от погодных условий (в ясную погоду он больше, чем в пасмурную), времени года (летом больше, чем зимой) и времени суток (днем больше, чем ночью). Ветер уменьшает ВГТ, поскольку при перемешивании воздуха его температура на разных высотах выравнивается. Над влажной почвой резко снижается ВГТ в приземном слое, а над оголенной почвой (паровое поле) ВГТ больше, чем над густым посевом или лугом. Это обусловлено различиями в температурном режиме этих поверхностей.

В результате определенного сочетания этих факторов ВГТ вблизи поверхности в пересчете на 100 м высоты может составлять более 100 ºС/100 м. В таких случаях и возникает тепловая конвекция.

Изменение температуры воздуха с высотой определяет знак ВГТ: если ВГТ > 0, то температура уменьшается с удалением от деятельной поверхности, что обычно бывает днем и летом; если ВГТ = 0, то температура с высотой не меняется; если ВГТ < 0, то температура увеличивается с высотой и такое распределение температуры называют инверсией.

В зависимости от условий образования инверсий в приземном слое атмосферы их подразделяют на радиационные и адветивные.

1. Радиационные инверсии возникают при радиационном выхолаживании земной поверхности. Такие инверсии в теплый период года образуются ночью, а зимой наблюдаются также и днем. Поэтому радиационные инверсии подразделяют на ночные (летние) и зимние.

2. Адвективные инверсии образуются при адвекции (перемещении) теплого воздуха на холодную подстилающую поверхность, которая охлаждает прилегающие к ней слои надвигающегося воздуха. К этим инверсиям относят также и снежные инверсии. Они возникают при адвекции воздуха, имеющего температуру выше 0°С, на поверхность, покрытую снегом. Понижение температуры в самом нижнем слое в этом случае связано с затратами тепла на таяние снега.

Измерение температуры воздуха

На метеорологических станциях термометры устанавливают в особой будке, называемой психрометрической будкой, стенки которой жалюзийные. В такую будку не проникают лучи Солнца, но в то же время воздух имеет свободный доступ в нее.

Термометры устанавливают на штативе так, чтобы резервуары располагались на высоте 2 м от деятельной поверхности.

Срочную температуру воздуха измеряют ртутным психрометрическим термометром ТМ-4, который устанавливают вертикально. При температуре ниже —35°С используют низкоградус­ный спиртовой термометр ТМ-9.

Экстремальные температуры измеряют по максимальному ТМ-1 и минимальному ТМ-2 термометрам, которые укладывают горизонтально.

Для непрерывной записи температуры воздуха служит термограф М-16А, который помещают в жалюзийной будке для самописцев. В зависимости от скорости вращения барабана термографы бывают суточные и недельные.

В посевах и насаждениях температуру воздуха измеряют, не нарушая растительный покров. Для этого используют аспирационный психрометр.

Значение температуры воздуха для сельскохозяйственного

Производства

Значение температуры воздуха для сельского хозяйства общеизвестно. Фотосинтез, дыхание, транспирация, усвоение питательных веществ из почвы и другие физиологические процессы происходят в определенном диапазоне температур. Существуют температурные пределы жизнедеятельности растений — биологический минимум и биологический максимум. Между ними находится зона оптимальных температур, при которых наиболее интенсивно развиваются растения и формируется урожай. Пределы температуры для различных растений неодинаковы и изменяются даже для одного и того же растения в период его вегетации, а также при перемещении растений в другие географические условия. Таким образом, их нельзя считать по­стоянными. Они могут сдвигаться в пределах генетически заложенной нормы реакции в результате приспособления к условиям среды. Самые низкие и самые высокие температуры, которые выдерживает данное растение, называют температурными или летальными границами жизни. В пределах этих границ находятся так называемые латентные границы — скрытые (внешне не проявляющиеся) границы физиологической реакции. После перехода через эти границы активные жизненные процессы обратимо снижаются до минимального значения, и протоплазма клеток впадает в тепловое или холодное оцепенение. При достижении летальной границы возникают, необратимые повреждения и жизнь прекращается.

Температура среды также является одним из основных метеорологических факторов, определяющих возможность возникновения заболевания растений и степень его вредоносности. Влияние этого фактора начинает проявляться уже на первых этапах инфекционного процесса, обусловливая жизнеспособность возбудителя болезни и возможность его сохранения к началу вегетационного периода. Сохранение жизнеспособности возбудителя в значительной мере зависит от формы его существования в течение периода, когда прекращается вегетация растений. Наименее стойкими к воздействию среды в это время оказываются так называемые пропагативные споры. Так, конидии возбудителя мучнистой росы пшеницы способны прорастать в большом диапазоне температур (от 0 до 35 °С), что не позволяет им сохраняться уже при температуре, близкой к 0 °С, а споры милдью виноградной лозы способны сохраняться около 20 сут лишь при температуре ниже 10 °С.

Температура среды регулирует и скорость прорастания спор (рис. 4.8).

Тесно связаны с температурным режимом распространение и вредоносность вредителей сельскохозяйственных растений. Для каждого вида вредных насекомых существуют оптимальные и предельные значения температуры. Так, у саранчи период развития от стадии личинки до взрослого насекомого при температуре 32...39 °С длится 20 сут, при 22...27 °С - около 52 сут. Недостаток тепла задерживает или прекращает развитие насекомых. Например, гусеница лугового мотылька при температуре ниже 17 °С не превращается в куколку, аналогичный эффект наблюдается у личинки жука-казарки при температуре ниже 14 °С.

Температура воздуха определяет также состояние, поведение и продуктивность сельскохозяйственных животных.

Тепло — один из основных экологических факторов жизнедеятельности биоценозов. По­этому учет температурного режима воздуха важен для всех отраслей сельскохозяйственного производства как при выборе проектных решений, например районирование культур и сортов сельскохозяйственных растений и пород животных, так и при выработке плановых: расчеты сроков сева и уборки, числа и сроков обработки посевов гербицидами, поливов и т. д.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: