Аналіз навчальної програми середньої та старшої школи з фізики

 

У 2011-2012 навчальному році завершується перехід загальноосвітніх навчальних закладів на вивчення предметів за новими різнорівневими навчальними програмами, які створено на основі Державного стандарту базової і повної загальної середньої освіти[9].

В основній школі, 7-9 кл., вивчається завершений базовий курс фізики, який закладає основи фізичних знань. Навчання фізики у 7-9 класах проводитиметься за програмою «Фізика. Астрономія» У 8-9 класах з поглибленим вивченням фізики викладання здійснюється відповідно до «Збірника навчальних програм для загальноосвітніх закладів з поглибленим вивченням предметів природничо-математичного та технологічного циклу»

У старшій школі вивчення фізики відбувається залежно від обраного профілю навчання: на рівні стандарту, академічному або профільному. Зміст навчального матеріалу для 10 та 11 класів визначається програмами для загальноосвітніх навчальних закладів[9]/

Для більшої ясності важливим є вивчення навчальної програми з фізики для середньої та старшої школи з державними вимогами до рівня загальноосвітньої підготовки учнів.

З поняттям закон збереження механічної енергії учні вперше зустрічаються у 8 класі на початку II семестру, після розділу «Механічний рух» та «Взаємодія тіл». На той час учні вже знайомі з поняттям механічна взаємодія, тиск, пружність, вага, які є основою для подальшого вивчення розділу «Робота і енергія.»


Основна школа -рівень стандарту[12]

Зміст навчального матеріалу

Державні вимоги до рівня загальноосвітньої підготовки учнів

РОБОТА І ЕНЕРГІЯМеханічна робота. Одиниці роботи. Потужність та одиниці її вимірювання. Кінетична і потенціальна енергії. Перетворення одного виду механічної енергії в інший. Закон збереження механічної енергії.Машини і механізми. Прості механізми. Коефіцієнт корисної дії (ККД) механізмів. “Золоте правило” механіки. Лабораторна робота 10. Визначення ККД похилої площини. Демонстрації: 1. Визначення роботи під час переміщення тіла. 2. Рівність роботи під час використання простих механізмів. 3. Потенціальна енергія піднятого над Землею тіла і деформованої пружини. 4. Перехід одного виду механічної енергії в інший. 5. Виконання роботи за рахунок кінетичної енергії тіла. 6. Зміна енергії тіла під час виконання роботи Узагальнюючі заняття Енергія в житті людини. Теплоенергетика. Способи збереження енергетичних ресурсів. Енергозберігаючі технології. Використання енергії людиною та охорона природи. Учень: називає: види механічної енергії, одиницi роботи, потужностi, енергiї, простi механiзми; наводить приклади використання машин i механiзмiв, перетворення одного виду механiчної енергiї в iнший; формулює закон збереження механiчної енергiї, “золоте правило” механiки; записує формули роботи, потужностi, ККД механiзму, кiнетичної енергiї, потенцiальної енергiї тiла, пiднятого над поверхнею Землi; може описати перетворення кiнетичної енергiї в потенцiальну i навпаки; характеризувати машини i механiзми за їх потужнiстю; пояснити “золоте правило” механiки як окремий випадок закону збереження енергiї; здатний спостерiгати перетворення енергiї в механiчних процесах;  вимiрювати потужнiсть i ККД механiзмiв; користуватися простими механiзмами (важiль, блок, похила площина); може розв’язувати задачi, застосовуючи формули роботи, потужностi, кiнетичної та потенцiальної енергiї, коефiцiєнта корисної дiї, закон збереження механiчної енергiї.  

 

Як бачимо за навчальною програмою, реалізується такий підхід, щодо вивчення закону збереження енергії: спочатку вводиться поняття робота, а вже потім на основі нього виводиться поняття енергія. У основній школі учні отримують лише початкові знання з даної теми, які необхідні їм для подальшого вивчення фізики. Такий метод навчання можна простежити і аналізуючи підручники з фізики 8 класу під ред. Коршака[10] «…робота у фізиці - величина, що характеризує перетворення енергії одного виду в інший, яке відбувається у даній фізичній системі». Далі на розгляд учням дається декілька прикладів розв’язання задач, з детальним поясненням ходу розв’язку та отриманої відповіді. Після розгляду прикладів у § 45 автор зазначає доречним дати учням таке визначення: робота визначається як зміна величини, що дорівнює  й описує стан тіла у довільний момент часу. Цю величину називають енергією. Фізична величина, що описує стан тіла і зміна якої визначає роботу, називається енергією. Після якого вводять поняття «кінетична енергія», зазначаючи, що кінетична енергія є величиною відносною. У підручнику важливе місце відведено на виведення формули для кінетичної енергії:розглянемо тіло масою m, на яке діє сила . Напрям дії сили збігається з напрямом переміщення. Роботу, яку виконує ця сила

 

 

Модуль переміщення:

 

Тому

 

 

Такий метод є зручнішим, оскільки ним можна користуватися навіть в разі змінної сили і довільної траєкторії. Після параграфу наведені питання для самоконтролю учнів:

.Чому кінетична енергія є величиною відносною?

. Як робота пов’язана з кінетичною енергією?

У § 46 розглядається поняття «потенціальна енергія» і робота сили тяжіння. Необхідно звернути увагу учнів на те, що робота вили тяжіння дорівнює зміні потенціальної енергії з протилежним знаком. Закон збереження та перетворення енергії вивчається у § 49 при детальному розгляді взаємодії тіла масою m та стиснутої пружини, деформація якої .

Дещо іншою методикою користується Божинова у підручнику з фізики за 8 клас[5]: поняття енергія також вводиться на основі поняття робота, але дещо відрізняється поетапність викладення матеріалу даного розділу, так у § 25 вводиться поняття робота разом з потенціальною енергією за тим же принципом, що і в Коршака. Поняття кінетична енергія з законом збереження та перетворення енергії розглядаються у § 26. Нажаль, у цьому підручнику немає виводу формули для кінетичної енергії, що може спричинити нерозуміння фізичного сенсу поняття, з боку учнів. Розповідь учителя має підкріплюватись такими демонстраціями: перехід одного виду механічної енергії в інший(коливання кульки); виконання роботи за рахунок кінетичної енергії тіла(рух візка по похилій площині). Проте перевагами є те, що підручник дуже добре проілюстрований та з великою кількістю прикладів та задач якісного характеру, що надають можливість учням подумати, знайти правильну відповідь, висловити свої міркування, щодо даної задачі. Наприклад: чому легковим автомобілям дозволено їздити містом з більшою швидкістю, ніж вантажним?

Вдруге учні зустрічають з поняття закону збереження енергії у 10 класі під час вивчення розділу «Динаміка» методика вивчення закону збереження енергії така ж, але питання на багато порядків складніші, якісні задачі вимагають більш детального пояснення та розуміння, тепер закон збереження енергії використовується не лише в механіці, а й у розділі механічні коливання, розділі термодинаміки, електродинаміки. Тепер учні мають змогу розв’язувати задачі користуючись поняттям закони збереження, що значно спрощує та прискорює розв’язок[3].


Старша школа -рівень стандарту[12]

Зміст навчального матеріалу Державні вимоги до рівня загальноосвітньої підготовки учнів
ДИНАМІКАМеханічна взаємодія тіл. Сила. Види сил у механіці. Вимірювання сил. Додавання сил. Закони динаміки. Перший закон Ньютона. Інерція та інертність. Другий закон Ньютона. Третій закон Ньютона. Межі застосування законів Ньютона. Гравітаційна взаємодія. Закон всесвітнього тяжіння. Сила тяжіння. Вага і невагомість. Штучні супутники Землі. Розвиток космонавтики. Рух тіла під дією кількох сил. Рівновага тіл. Момент сили. Умова рівноваги тіла, що має вісь обертання. Імпульс тіла. Закон збереження імпульсу. Реактивний рух. Механічна енергія. Кінетична і потенціальна енергія. Закон збереження енергії. Лабораторні роботи: 2. Вимірювання сил. 3. Дослідження рівноваги тіла під дією кількох сил. Демонстрації: 1. Вимірювання сил. 2. Додавання сил, що діють під кутом одна до одної. 3. Вага тіла при прискореному підніманні та падінні. 4. Рівновага тіл, під дією декількох сил. 5. Дослід із “жолобом Галілея”. 6. Закони Ньютона. 7. Реактивний рух. 8. Пружний удар двох кульок Фізичний практикум Дослідження механічного руху з урахуванням закону збереження енергії Учень: називає основні етапи розвитку космонавтики та її творців; наводить приклади прояву законів збереження енергії та імпульсу в природі й техніці, практичних застосувань законів динаміки; розрізняє рівняння кінематики і рівняння динаміки руху тіла; формулює умови рівноваги тіла для поступального і обертального рухів, І, ІІ і ІІІ закони Ньютона, закон всесвітнього тяжіння, закони збереження механічної енергії, імпульсу; записує їх формули; може описати всесвітнє тяжіння і реактивний рух, рух тіла під дією кількох сил, обґрунтувати реактивний рух як прояв дії закону збереження імпульсу; характеризувати універсальність законів Ньютона, пояснити фізичний зміст поняття імпульсу; порівняти різні методи вимірювання сил; здатний спостерігати залежність ваги тіла від руху опори чи підвісу, користуватися динамометром і визначати конкретні умови рівноваги тіла під дією декількох сил, оцінити похибки вимірювання і дотримуватися правил експлуатації приладів, які при цьому використовуються; може розв’язувати задачі, застосовуючи умови рівноваги тіла, закони динаміки при описанні окремих прикладів руху тіл та їх взаємодії, законів збереження імпульсу, енергії, представляти результати вивчення умов рівноваги тіла та застосування законів руху при розв’язуванні навчальних фізичних задач за допомогою таблиць, графіків, формул; систематизувати знання про закони динаміки та межі їх застосування; досліджувати можливі шляхи та екологічні проблеми вивільнення і споживання механічної енергії в регіоні;може розв’язувати задачі, застосовуючи закони динаміки, всесвітнього тяжіння, збереження імпульсу, енергії. Учень: називає прилади і матеріали, які використовувалися; формулює мету і завдання дослідження, і його теоретичні положення; може описати і обґрунтувати суть методу дослідження (ідею досліду); здатний самостійно вивчити або повторити теорію роботи, самостійно зібрати установку і виконати дослідження згідно з відповідною (спеціальною) інструкцією і в разі необхідності неодноразово повторити дослід; користуватися приладами, визначати їх загальні характеристики, дотримуватися правил експлуатації приладів; може представляти результати виконання теоретичних і експериментально-практичних завдань за допомогою формули, таблиці, графіка; оцінювати і перевіряти ступінь достовірності отриманих результатів; оцінювати практичну значимість набутого досвіду.

 

У 10 класі поряд з темою закон збереження енергії вивчається закон збереження імпульсу. При вивченні закону збереження імпульсу вводять ряд нових фізичних понять.

Засвоєння деяких з них дуже важливо для вивчення всього розділу. До числа цих понять слід віднести такі: сила, вага, невагомість, механічна система, замкнута механічна система, зовнішні сили, внутрішні сили, консервативні сили.

Проаналізуємо підручник з фізики за 10 клас[8]: поняття імпульс належить до тих фізичних величин на які поширюється закон збереження, що дає можливість визначати імпульси тіл та їх стан після взаємодії. Методика навчання є такою: у §41 розглядають задачу про взаємодію двох тіл, де за допомогою III закону Ньютона та імпульсів тіл виводять закон збереження імпульсу. У цьому розділі також розглядають поняття «пружний» та «непружний» удари. Після параграфу учням на самостійне опрацювання дається блок задач, деякі з них позначені *(зірочкою), що говорить про складність завдань.

Методика навчання за підручником з фізики за 10 клас Божинової[4] майже не відрізняється, лише додається певна кількість додаткових демонстрацій та лабораторних робіт. Наприклад: реактивний рух, пружний та непружний удари кульок.

Для учнів 10 класу характерною для учбового процесу є систематизація знань з різних предметів, встановлення предметних зв'язків. Все це створює грунт для оволодіння загальними законами природи і суспільного життя, що приводить до формування наукового світогляду.

У 9 класі у I семестрі учні одразу переходять до вивчення розділу «Електромагнітні явища». У цьому розділі учні знайомляться з такими поняттями як заряд, електрон, іон, поле. Ці поняття є суто абстрактними, що ускладнює розуміння учнями матеріалу. У цьому розділі фізики значну увагу необхідно надати наочності: фізичний експеримент, аналогії, модельні уявлення, комп’ютерна презентація, схеми, креслення, малюнки, таблиці. При вивченні цього розділу відбувається розширення та поглиблення в розумінні учнів поняття матерія. До цього вони знали лише один вид матерії - речовина. Тепер знайомляться з іншим (особливим) видом матерії - полем. В навчальній програмі висунуті до учнів вимоги такого типу[9]:

 

Основна школа-рівень стандарту[12]

Зміст навчального матеріалу Державні вимоги до рівня загальноосвітньої підготовки учнів
ЕЛЕКТРОМАГНІТНІ ЯВИЩАРозділ 1. ЕЛЕКТРИЧНЕ ПОЛЕ Електризація тіл. Електричний заряд. Два роди електричних зарядів. Дискретність електричного заряду. Будова атома. Електрон. Йон. Закон збереження електричного заряду.Електричне поле. Взаємодія заряджених тіл. Закон Кулона. Лабораторна робота 1. Дослідження взаємодії заряджених тіл. Демонстрації 1. Електризація різних тіл. 2. Взаємодія наелектризованих тіл. 3. Два роди електричних зарядів. 4. Подільність електричного заряду. 5. Будова і принцип дії електроскопа. 6. Закон Кулона. Учень: називає два роди електричних зарядiв, одиницю електричного заряду, способи виявлення електричного поля; наводить приклади електризацiї тiл у природi, електростатичної взаємодiї, впливу електричного поля на живi органiзми; розрiзняє точковий заряд i заряджене тiло, електричний заряд i електричне поле; формулює означення електричного заряду i електричного поля, закон Кулона; записує формулу сили взаємодiї двох точкових зарядiв (закон Кулона); може описати модель точкового заряду; класифiкувати електричнi заряди на позитивнi й негативнi; характеризувати електрон як носiя елементарного електричного заряду, йон як структурний елемент речовини;  пояснити механiзм електризацiї тiл, принцип дiї електроскопа; обґрунтувати дискретнiсть електричного заряду, взаємодiю заряджених тiл наявнiстю електричного поля; здатний спостерiгати електростатичну взаємодiю; дотримуватися правил безпеки пiд час роботи з накопичувачами електричних зарядiв високої енергiї; користуватися електроскопом; може розв’язувати задачi, застосовуючи закон Кулона.

При аналіз підручника з фізики за 9 клас Божинової виявилося, що краще розпочати з електромагнітної взаємодії, а точніше з дослідів, які її ілюструють(електризація паперу та оргскла), далі на основі електромагнітної взаємодії вводять поняття електричний заряд-це фізична величина, яка характеризує властивість частинок або тіл вступати в електромагнітну взаємодію. У процесі вивчення висвітлюються основі властивості заряду, та вводиться поняття «Електричне поле» та електрична взаємодія, на основі демонстрацій(заряджена куля та підвішені кульки на нитках).У § 3 під час демонстрації процесу електризації (тертя ебонітової палички вовною) формулюють закон збереження електричного заряду:повний заряд замкненої системи тіл або частинок залишається незмінним під час усіх взаємодій.

У підручнику з фізики за 9 клас методика викладання ідентична з попередньою, але про поняття як закон збереження електричного заряду взагалі не згадується[11].

 





Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: