Графики плотности двумерного нормального распределения

Рисунок 11. График плотности двумерного нормального распределения (нулевой вектор средних, единичная ковариационная матрица)

Рисунок 12. Сечение графика плотности двумерного нормального распределения плоскостью z=0.05

Рисунок 13. График плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и 0.5 на побочной)

Рисунок 14. Сечение графика плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и 0.5 на побочной) плоскостью z= 0.05

Рисунок 15. График плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и -0.5 на побочной)

Рисунок 17. Сечения графиков плотностей двумерного нормального распределения плоскостью z=0.05

Пример 1

Нормально распределённая случайная величина задана параметрами . Записать её функцию плотности и построить график.

Несмотря на кажущуюся простоту задания, в нём существует немало тонкостей.

Первый момент касается обозначений. Они стандартные, и никаких вольностей: математическое ожидание обозначают буквой (реже или («мю»)), а стандартное отклонение – буквой . Кстати, обратите внимание на формулировку: в условии ничего не сказано о сущности параметров «а» и «сигма», и несведущий человек может только догадываться, что это такое.

Решение начнём шаблонной фразой: функция плотности нормально распределённой случайной величины имеет вид . В данном случае и:

Первая, более лёгкая часть задачи выполнена. Теперь график. Вот на нём-то, на моей памяти, студентов «заворачивали» десятки раз, причём, многих неоднократно. По той причине, что график обладает несколькими принципиальными особенностями, которые нужно обязательно отобразить на чертеже.

Сначала полная картина, затем комментарии:

Строим декартову систему координат. При выполнении чертежа от руки во многих случаях оптимален следующий масштаб:

по оси абсцисс: 2 тетрадные клетки = 1 ед.;

по оси ординат: 2 тетрадные клетки = 0,1 ед., при этом саму ось следует расположить из тех соображений, что в точке функция достигает максимума, и вертикальная прямая (на чертеже отсутствует) является линией симметрии графика.

И логично, что в первую очередь удобно найти максимум функции. В данном примере он находится в точке :

Отмечаем вершину графика (красная точка).

Далее вычислим значения функции при , а точнее только одно из них – в силу симметрии графика они равны:

Отмечаем синим цветом.

Внимание! – это точки перегиба нормальной кривой. На интервале график является выпуклым, а на крайних интервалах – вогнутым.


Домашнее задание.

2.Найти точку перегиба плотности нормального распределения.

Далее отклоняемся от центра ещё на одно стандартное отклонение и рассчитываем высоту:

Отмечаем точки на чертеже (зелёный цвет) и видим, что этого вполне достаточно.

На завершающем этапе аккуратно чертим график, и особо аккуратно отражаем его выпуклость / вогнутость! Ну и, наверное, вы давно поняли, что ось абсцисс – это горизонтальная асимптота, и «залезать» за неё категорически нельзя!

При увеличении или уменьшении «а» (при неизменном «сигма») график сохраняет свою форму и перемещается вправо / влево соответственно. Так, например, при функция принимает вид и наш график «переезжает» на 3 единицы влево – ровнехонько в начало координат:

Нормально распределённая величина с нулевым математическим ожиданием получила вполне естественное название – центрированная; её функция плотности чётная, и график симметричен относительно оси ординат.

Далее отклоняемся от центра ещё на одно стандартное отклонение и рассчитываем высоту:

Отмечаем точки на чертеже (зелёный цвет) и видим, что этого вполне достаточно.

На завершающем этапе аккуратно чертим график, и особо аккуратно отражаем его выпуклость / вогнутость! Ну и, наверное, вы давно поняли, что ось абсцисс – это горизонтальная асимптота, и «залезать» за неё категорически нельзя!

При увеличении или уменьшении «а» (при неизменном «сигма») график сохраняет свою форму и перемещается вправо / влево соответственно. Так, например, при функция принимает вид и наш график «переезжает» на 3 единицы влево – ровнехонько в начало координат:

Нормально распределённая величина с нулевым математическим ожиданием получила вполне естественное название – центрированная; её функция плотности чётная, и график симметричен относительно оси ординат.

В случае изменения «сигмы» (при постоянном «а»), график «остаётся на месте», но меняет форму. При увеличении он становится более низким и вытянутым, словно осьминог, растягивающий щупальца. И, наоборот, при уменьшении график становится более узким и высоким – получается «удивлённый осьминог». Так, при уменьшении «сигмы» в два раза: предыдущий график сужается и вытягивается вверх в два раза:

Всё в полном соответствии с геометрическими преобразованиями графиков.

Нормальное распределёние с единичным значением «сигма» называется нормированным, а если оно ещё и центрировано (наш случай), то такое распределение называют стандартным. Оно имеет ещё более простую функцию плотности, которая уже встречалась в локальной теореме Лапласа: . Стандартное распределение нашло широкое применение на практике, и очень скоро мы окончательно поймём его предназначение.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: