Вызванные потенциалы и потенциалы, связанные с событиями

Регистрация импульсной активности клеток.

Нейроны имеют небольшие размеры (несколько десятков микрон), регистрация их активности осуществляется с помощью подводимых вплотную к ним специальных отводящих микроэлектродов. Микроэлектроды бывают металлическими и стеклянными. Электрод фиксируется в специальном микроманипуляторе, укреплённом на черепе животного, и коммутируется с усилителем. С помощью микроманипулятора электрод через отверстие в черепе пошагово вводят в мозг. Подведение электрода к нейрону осуществляется либо в ручную, и в этом случае животное должно находиться в состоянии покоя, либо автоматически на любом этапе поведения животного. Усиленный сигнал поступает на монитор и записывается на магнитную ленту или в память ЭВМ. При "подходе" кончика электрода к нейрону экспериментатор видит на мониторе поведение импульсов, амплитуда которых при дальнейшем осторожном продвижение электрода постепенно увеличивается. Когда амплитуда импульсов начинает превосходить фоновую активность мозга, электрод больше не подводят, чтобы исключить возможность повреждения мембраны нейрона.

Электроэнцефалография: схемы расположения электродов и отведений ЭЭГ, основные ритмы ЭЭГ и артефакты.

Электроэнцефалография (ЭЭГ) – высокоинформативный метод диагностики состояния нервной системы, основанный на регистрации биоэлектрических потенциалов коры головного мозга в процессе его жизнедеятельности. В энцефалограмме отражаются только низкочастотные биоэлектрические процессы длительностью от 10мс до 10 мин. Предполагается, что электроэнцефалограммы (ЭЭГ) в каждый момент времени отражают суммарную электрическую активность клеток мозга.

Процесс: ЭЭГ регистрирует с помощью наложенных на кожную поверхность головы (скальпа) отводящих электродов, скоммутированных в единую цепь со специальной усилительной техникой. Увеличенные по амплитуде сигналы с выхода усилителей можно записать на магнитную ленту или в память компьютера для последующей статистической обработки. Для минимизации контактного сопротивления между электродом и скальпом на месте наложения электрода тщательно раздвигают волосы, кожу обезжиривают раствором спирта и между электродом и кожей кладут спецэлектропроводную пасту.

ЭЭГ всегда измеряется между двумя точками. Существуют два способа регистрации ЭЭГ - биполярный и монополярный. При биполярном отведении регистрируются разность потенциалов между двумя активными электродами. Этот метод применяется в клинике для локализации патологического очага в мозге, но он не позволяет определить, какие колебания возникают под каждым из двух электродов, и каковы их амплитудные характеристики. В психофизиологии общепринятым считается метод монополярного отведения. При монополярном методе отведения регистрируется разность потенциалов между различными точками на поверхности головы по отношению к какой-то одной индифферентной точке. В качестве индифферентной точки берут такой участок головы или лица, на котором какие - либо электрические процессы минимальны: обычно это - мочка уха или сосцевидный отросток черепа. В этом случае регистрируются с электрода, наложенного на скальп, изменения потенциала с определённого участка мозга.

 

Основные ритмы ЭЭГ:

1. Альфа-ритм - наиболее часто встречающийся ритм, который состоит из волн правильной, почти синусоидальной формы. Наблюдается он в состоянии спокойного бодрствования, медитации и длительной монотонной деятельности. В первую очередь проявляется в затылочных областях, где он наиболее выражен, и может периодически распространяться на другие области мозга. Длительность веретён составляет от долей секунды до нескольких секунд. По данным Л.А. Новиковой, у слепых людей с врождённой или многолетней слепотой, а также при сохранности только светоощущения альфа - ритм отсутствует.

2. Каппа-ритм - сходен по частоте с альфа-ритмом, регистрируется в височной области при подавлении альфа-ритма в других областях в процессе умственной деятельности.

3. Бета-ритм - наиболее выражен в лобных областях, но при различных видах интенсивной деятельности резко усиливается и распространяется на другие области мозга.

4. Гамма-ритм - наблюдается при решении задач, требующих максимального сосредоточенного внимания.

5. Тета-ритм - связан с поисковым поведением, усиливается при эмоциональном напряжении. Коган считает, что тета-ритм связан с квантованием извлекаемых из памяти энграмм.

6. Дельта-ритм - возникает в естественном и наркотическом сне, а также наблюдается при регистрации участков коры, граничащих с областью, поражённой опухолью.

Артефакты - электрические процессы, не связанные с активностью мозга, встречающиеся при записи ЭЭГ. Все артефакты можно разделить на биологические и технические.

Технические артефакты связаны, как правило, с неудовлетворительными контактами отводящих электродов с кожными покровами головы, в результате чего контактное сопротивление резко возрастает, а это приводит к снижению электрического сигнала на входе усилителя, и наблюдается при регистрации ЭЭГ синусоидальная кривая, осложнённая низкочастотными потенциалами. Сходная артефактная картина происходит при отсутствии заземления испытуемого. Легко устранимы.

Биологические артефакты появляются от других источников организма и в большинстве случаев не устранимы техническими средствами. К этим артефактам относятся артефакты от движения глаз, которые больше всего выражены в передних областях мозга, и активности скелетных мышц, особенно жевательных и мимических. Избавиться от таких артефактов можно только изменением условий проведения эксперимента, исключающих постоянное движение глаз и активность мышц, а также специальным инструктированием испытуемого.

Вызванные потенциалы и потенциалы, связанные с событиями.

Вызванный потенциал (ВП) — электрическая реакция мозга на внешний раздражитель или на выполнение умственной (когнитивной) задачи. Наиболее широко используемыми раздражителями являются визульные для регистрации зрительных ВП, звуковые для регистрации аудиторных ВП и электрические для регистрации соматосенсорных ВП. Запись ВП производится при помощи электроэнцефалографических электродов, расположенных на поверхности головы.

Метод вызванных потенциалов применяется для исследования функции сенсорных систем мозга (соматосенсорной, зрительной, аудиторной) и систем мозга ответственных за когнитивные процессы. В основе метода лежит регистрация биоэлектрических реакций мозга в ответ на внешнее раздражение (в случае сенсорных ВП) и при выполнении когнитивной задачи. В зависимости от времени появления вызванного ответа после предъявления стимула ВП принято разделять на коротко-латентные (до 50 миллисекунд), средне-латентные (50-100 мс) и длинно-латентные (свыше 100 мс).

Более широкое понятие, в которое входят вызванные потенциалы - это потенциалы, связанные с событиями (ПСС). При исследовании таких потенциалов применяют когерентное усреднение не только относительно стимула, но и относительно других событий (например, относительно нажатия испытуемым на кнопку, перемещения его взора и т.п.)

Способы выделения сигнала из шума позволяют отмечать в записи ЭЭГ изменения потенциала, которые достаточно строго связаны во времени с любым фиксированным событием. В связи с этим появилось новое обозначение этого круга физиологических явлений – событийно-связанные потенциалы (ССП).

Примерами здесь служат: колебания, связанные с активностью двигательной коры (моторный потенциал, или потенциал, связанный с движением); потенциал, связанный с намерением произвести определенное действие (так называемая Е-волна); потенциал, возникающий при пропуске ожидаемого стимула. Эти потенциалы представляют собой последовательность позитивных и негативных колебаний, регистрируемых, как правило, в интервале 0-500 мс. Возможны и более поздние колебания в интервале до 1000 мс.

4. Магнитоэнцефалография.

Активность мозга всегда представлена синхронной активностью большого количества нервных клеток, сопровождаемой слабыми электрическими токами, которые создают магнитные поля. Регистрация этих полей неконтактным способом позволяет получить так называемую магнитоэнцефалограмму (МЭГ).

МЭГ регистрируют с помощью сверхпроводящего квантового интерференционного устройства - магнитометра. Предполагается, что если ЭЭГ больше связана с радиальными по отношению к поверхности коры головного мозга источникам тока (диполям), что имеет место на поверхности извилин, то МЭГ больше связана с тангеционально направленными источниками тока, имеющими место в корковых областях, образующих борозды.

Если исходить из того, что площадь коры головного мозга в бороздах и на поверхности извилин приблизительно одинакова, то несомненно, что значимость магнитоэнцефалографии при изучении активности мозга сопоставима с электроэнцефалографией. Электрическое и магнитное поля взаимоперпендикулярны, поэтому при одновременной регистрации обоих полей можно получить взаимодополняющую информацию об исходном источнике генерации тех или иных потенциалов. МЭГ может быть представлена в виде профилей магнитных полей на поверхности черепа либо в виде кривой линии, отражающей частоту и амплитуду изменения магнитного поля в определённой точке скальпа. МЭГ дополняет информацию об активности мозга, получаемую с помощью элекроэнцефалографии.

 

5. Измерение локального мозгового кровотока.

Мозговая ткань зависит от непосредственного притока кислорода и глюкозы, поставляемых через кровь, поэтому увеличение локального кровотока может быть использовано в качестве косвенного признака локальной мозговой активации. Метод основан на измерении скорости вымывания из ткани мозга изотопов ксенона или криптона (изотопный клиренс) или же атомов водорода (водородный клиренс). Скорость вымывания радиоактивной метки прямо связана с интенсивностью кровотока. Чем интенсивнее кровоток в данном участке мозга, тем быстрее в нем будет накапливаться содержание радиоактивной метки и быстрее происходить ее вымывание. Увеличение кровотока коррелирует с ростом уровня метаболической активности мозга. Регистрация метки производится с помощью многоканальной гамма-камеры. Используют шлем со специальными сцинтилляционными датчиками (до 254 штук).

Применяют два метода введения изотопов.

При инвазивном методе изотоп вводят в кровяное русло через сонную артерию. Регистрацию начинают через 10 с после инъекции и продолжают в течение 40-50 с. Недостаток этого метода состоит в том, что можно исследовать только одно полушарие, которое связано с той сонной артерией, в которую сделана инъекция. Кроме того, не все области коры снабжаются кровью через сонные артерии.

Более широкое распространение получил неинвазивный способ измерения локального кровотока, когда изотоп вводят через дыхательные пути. Человек в течение 1 мин вдыхает очень малое количество инертного газа ксенона-133, а затем дышит нормальным воздухом. Через дыхательную систему изотоп попадает в кровяное русло и достигает мозга. Метка уходит из мозговой ткани через венозную кровь, возвращается к легким и выдыхается. Скорость вымывания изотопа в различных точках поверхности полушарий преобразуется в значения локального кровотока и представляется в виде карты метаболической активности мозга. В отличие от инвазивного метода в этом случае метка распространяется на оба полушария.

При измерении водородного клиренса в мозг вживляют ряд металлических электродов для регистрации сдвига электрохимического потенциала, который создается подкислением тканей ионами водорода. По его уровню судят об активности локального участка мозга. Этот метод на человеке применяют в медицинских целях: для уточнения клинического диагноза при опухолях, инсультах, травмах.

Существенным недостатком этих методов является их низкое временное разрешение. Каждое измерение длится около 2 мин. Поэтому техника измерения локального мозгового кровотока хороша для оценки тонических изменений или характеристики фоновой мозговой активности и малопригодна для изучения ее динамики.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: