Сенсорные системы: функции, строение и основные процессы, происходящие в сенсорных системах

сенсорные системы — это специализированные части нервной системы, включающие периферические рецепторы (сенсорные органы, или органы чувств), отходящие от них нервные волокна (проводящие пути) и клетки центральной нервной системы, сгруппированные вместе (сенсорные центры). Каждая область мозга, в которой находится сенсорный центр (ядро) и осуществляется переключение нервных волокон, образует уровень сенсорной системы. В сенсорных органах происходит преобразование энергии внеш­него стимула в нервный сигнал — рецепция. Нервный сигнал (рецепторный потенциал) трансформируется в импульсную активность или потенциалы действия нейронов (кодирование). По проводящим путям потенциалы действия достигают сенсорных ядер, на клетках которых происходит переключение нервных волокон и преобразова­ние нервного сигнала (перекодирование). На всех уровнях сенсорной системы, одновременно с кодированием и анализом стимулов осу­ществляется декодирование сигналов, т.е. считывание сенсорного кода. Декодирование осуществляется на основе связей сенсорных ядер с двигательными и ассоциативными отделами мозга. Нервные импульсы аксонов сенсорных нейронов в клетках двигательных сис­тем вызывают возбуждение (или торможение). Результатом этих процессов является движение — действие или остановка движения — бездействие. Конечным проявлением активации ассоциативных функций также является движение.

основными функциями сенсорных систем являются:

  1. ре­цепция сигнала;
  2. преобразование рецепторного потенциала в им­пульсную активность нервных путей;
  3. передача нервной активнос­ти к сенсорным ядрам;
  4. преобразование нервной активности в сенсорных ядрах на каждом уровне;
  5. анализ свойств сигнала;
  6. идентификация свойств сигнала;
  7. классификация и опознание сигнала (принятие решения).


12. Определение, свойства и виды рецепторов.

Рецепторы – это специальные клетки или специальные нервные окончания, предназначены для трансформации энергии (преобразовании) различных видов раздражителей в специфическую активность нервной системы (в нервный импульс).

Сигналы, поступающие в ЦНС с рецепторов, вызывают либо новые реакции, либо изменяют течение происходящей в данный момент деятельности.

Большинство рецепторов представлено клеткой, снабженной волосками или ресничками, которые представляют такие образования, которые действуют подобно усилителям по отношению к раздражителям.

Происходит либо механическое, либо биохимическое взаимодействие раздражителя с рецепторами. Пороги восприятия раздражителя очень низкие.

По действию стимулов рецепторы делятся:

1. Интерорецепторы

2. Экстерорецепторы

3. Проприорецепторы: мышечные веретена и сухожильные органы Гольджи (открыл И.М. Сеченов новый вид чувствительности – суставно-мышечное чувство).

Выделяют 3 вида рецепторов:

1. Фазные – это рецепторы, которые возбуждаются в начальный и конечный период действия раздражителя.

2. Тонические – действуют в течение всего периода действия раздражителя.

3. Фазно–тонические - у которых все время возникают импульсы, но в начале и в конце больше.

Качество воспринимаемой энергии называется модальностью.

Рецепторы могут быть:

1. Мономодальные (воспринимают 1 вид раздражителя).

2. Полимодальные (могут воспринимать несколько раздражителей).

Передача информации от перефирических органов происходит по сенсорным путям, которые могут быть специфические и неспецифические.

Специфические – это мономодальные.

Неспецифические – это полимодальные

Свойства

· Избирательность - чувствительность к адекватным раздражителям

· Возбудимость - минимальной величиной энергии адекватного раздражителя, которая необходима для возникновения возбуждения, т.е. порогом возбуждения.

· Низкая величина порогов для адекватных раздражителей

· Адаптация (может сопровождаться как понижением, так и повышением возбудимости рецепторов. Так, при переходе из светлого помещения в темное происходит постепенное повышение возбудимости фоторецепторов глаза, и человек начинает различать слабо освещенные предметы— это так называемая темновая адаптация.)


13. Механизмы возбуждения первично-чувствующих и вторично-чувствующих рецепторов.

Первично-чувствующие рецепторы: раздражитель действует на дендрит сенсорного нейрона, изменяется проницаемость клеточной мембраны к ионам (в основном к Na+), образуется локальный электрический потенциал (рецепторный потенциал), который электротонически распространяется вдоль мембраны к аксону. На мембране аксона образуется потенциал действия, передаваемый далее в ЦНС.

Сенсорный нейрон с первично-чувствующим рецептором представляет собой биполярный нейрон, на одном полюсе которого располагается дендрит с ресничкой, а на другом – аксон, передающий возбуждение в ЦНС. Примеры: проприорецепторы, терморецепторы, обонятельные клетки.

Вторично-чувствующие рецепторы: в них раздражитель действует на рецепторную клетку, в ней возникает возбуждение (рецепторный потенциал). На мембране аксона рецепторный потенциал активирует выделение нейромедиатора в синапс, в результате чего на постсинаптической мембране второго нейрона (чаще всего биполярного) образуется генераторный потенциал, который и приводит к образованию потенциала действия на соседних участках постсинаптической мембраны. Далее этот потенциал действия передается в ЦНС. Примеры: волосковые клетки уха, вкусовые рецепторы, фоторецепторы глаза.


!14. Органы обоняния и вкуса (локализация рецепторов, первое переключение, повторное переключение, проекционная зона).

Органы обоняния и вкуса возбуждаются при химическими раздражителями. Рецепторы обонятельного анализатора возбуждаются газообразными, а вкусового - растворенными химическими веществами. Развитие органов обоняния также зависит от образа жизни животных. Обонятельный эпителий располагается в стороне от главного дыхательного пути и вдыхаемый воздух поступает туда путем вихревых движений или диффузии. Такие вихревые движения возникают при “принюхивании” т.е. при коротких вдохах через нос и расширении ноздрей, что облегчает проникновению анализируемого воздуха в эти области.

Обонятельные клетки представлены биполярными нейронами аксоны которых образуют обонятельный нерв, заканчивающийся в обонятельной луковице, являющейся обонятельным центром и далее от него идут пути в другие вышележащие структуры мозга. На поверхности обонятельных клеток имеется большое количество ресничек, значительно увеличивающих - обонятельную поверхность.

Вкусовой анализатор служит для определения характера, вкусовых качеств корма, его пригодности к поеданию. Животным, живущим в воде вкусовой и обонятельный анализаторы помогают ориентироваться в окружающей среде, определять наличие пищи, самки. С переходом к жизни в воздушной среде значение вкусового анализатора уменьшается. У травоядных животных вкусовой анализатор развит хорошо, что бывает видно на пастбище и в кормушке, когда животные не всю подряд поедают траву и сено.

Периферический отдел вкусового анализатора представлен вкусовыми луковицами, расположенными на языке, мягком небе, задней стенке глотки, миндалинах и надгортаннике. Вкусовые луковицы расположены на поверхности грибовидных, листовидных и желобовидных сосочков


15. Кожный анализатор (локализация рецепторов, первое переключение, повторное переключение, проекционная зона).

В коже располагаются различные рецепторные образования. Наиболее простым типом сенсорного рецептора являются свободные нервные окончания. Более сложную организацию имеют морфологически дифференцированные образования, такие как осязательные диски (диски Меркеля), осязательные тельца (тельца Мейснера), пластинчатые тельца (тельца Пачини) — рецепторы давления и вибрации, колбы Краузе, тельца Руффини и др.

Большинству специализированных концевых образований присуща предпочтительная чувствительность к определенным видам раздражении и только свободные нервные окончания являются полимодальными рецепторами.


16. Зрительный анализатор (локализация рецепторов, первое переключение, повторное переключение, проекционная зона).

Наибольшее количество информации (до 90%) о внешнем мире человек получает с помощью органа зрения. Орган зре­ния - глаз - состоит из глазного яблока и вспомогательного аппарата. К вспомогательному аппарату относят веки, ресницы, слезные железы и мышцы глазного яблока. Веки образованы складками кожи, выстланны­ми изнутри слизистой оболочкой - конъюнктивой. Слезные железы на­ходятся в наружном верхнем углу глаза. Слезы омывают передний отдел глазного яблока и через носослезный канал попадают в полость носа. Мышцы глазного яблока приводят его в движение и направляют в сто­рону рассматриваемого предмета
17. Зрительный анализатор. Строение сетчатки. Формирование цветоощущения. Проводниковый отдел. Переработка информации.

Сетчатка имеет очень сложное строение. В ней находятся световоспринимающие клетки - палочки и колбочки. Палочки (130 млн.) более чувствительны к свету. Их называют аппаратом сумеречного зрения. Колбочки (7 млн.) - это аппарат дневного и цветового зрения. При раздражении световыми лучами этих клеток возникает возбуждение, кото­рое через зрительный нерв проводится в зрительные центры, располо­женные в затылочной зоне коры больших полушарий. Участок сетчатки, из которого выходит зрительный нерв, лишен палочек и колбочек и поэтому не способен к восприятию света. Его называют слепым пятном. Почти рядом с ним находится желтое пятно, образованное скоплением колбочек, - место наилучшего видения.

В состав оптической, или преломляющей, системы глаза входят: ро­говица, водянистая влага, хрусталик и стекловидное тело. У людей с нормальным зрением лучи света, проходящие через каждую из этих сред, преломляются и затем попадают на сетчатку, где образуют умень­шенное и перевернутое изображение видимых глазом предметов. Из этих прозрачных сред только хрусталик способен активно изменять свою кривизну, увеличивая ее при рассматривании близких предметов и уменьшая при взгляде на далекие объекты. Такая способность глаза к четкому видению разноудаленных предметов называется аккомодацией. Если при прохождении через прозрачные среды лучи преломляются слишком сильно, они фокусируются впереди сетчатки, в результате чего у человека возникает близорукость. У таких людей глазное яблоко либо удлинено, либо увеличена кривизна хрусталика. Слабое преломление этих сред приводит к фокусировке лучей позади сетчатки, что вызывает дальнозоркость. Она возникает из-за укороченности глазного яблока или уплощения хрусталика. Правильно подобранные очки позволяют испра­вить эти Проводящие пути зрительного анализатора.Первые, вторые и третьи нейроны проводящего пути зрительного анализатора расположены в сетчатке. Волокна третьих (ганглиозных) нейронов в составе зрительного нерва частично перекрещиваются образуя зрительный перекрест (хиазму). После перекреста образуются правый и левый зрительные тракты. Волокна зрительного тракта заканчиваются в промежуточном мозге (ядре латерального коленчатого тела и подушке таламуса), где расположены четвертые нейроны зрительного пути. Небольшое число волокон достигает среднего мозга в области верхних холмиков четверохолмия. Аксоны четвертых нейронов проходят через заднюю ножку внутренней капсулы и проецируются на кору затылочной доли полушарий большого мозга, где расположен корковый центр зрительного анализатора.недостатки зрения.


18. Слуховой анализатор (локализация рецепторов, первое переключение, повторное переключение, проекционная зона). Проводниковый отдел. Переработка информации. Слуховая адаптация.

Слуховой и вестибулярный анализаторы. Орган слуха и равновесия включает три отдела: наружное, среднее и внутреннее ухо. Наружное ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина представлена эластическим хрящом, покрытым кожей, и служит для улавливания звука. Наружный слуховой проход - канал дли­ной 3,5 см, который начинается наружным слуховым отверстием и за­канчивается слепо барабанной перепонкой. Он выстлан кожей и имеет железы, выделяющие ушную серу.

За барабанной перепонкой расположена полость среднего уха, со­стоящая из барабанной полости, заполненной воздухом, слуховых кос­точек и слуховой (евстахиевой) трубы. Слуховая труба связывает бара­банную полость с полостью носоглотки, что способствует уравниванию давления по обе стороны барабанной перепонки. Слуховые косточки - мо­лоточек, наковальня и стремечко соединены между собой подвижно. Молоточек рукояткой сращен с ба­рабанной перепонкой, головка моло­точка прилегает к наковальне, кото­рая другим концом соединяется со стремечком. Стремечко широким основанием соединяется с перепон­кой овального окна, ведущего во внутреннее ухо. Внутреннее ухо расположено в толще пирамиды височной кости; состоит из костного лабиринта и расположенного в нем перепончато­го лабиринта. Пространство между ними заполнено жидкостью – перилимфой, полость перепончатого ла­биринта - эндолимфой. Костный лабиринт содержит три отдела: пред­дверие, улитку и полукружные каналы. Улитка относится к органу слу­ха, остальные его части - к органу равновесия.

Улитка представляет собой костный канал, закрученный в виде спи­рали. Ее полость разделена тонкой перепончатой перегородкой - основ­ной мембраной. Она состоит из многочисленных (около 24 тыс.) соеди­нительнотканных волоконец разной длины. На основной мембране по­мещаются рецепторные волосковые клетки кортиева органа - перифери­ческого отдела слухового анализатора.

Звуковые волны через наружный слуховой проход достигают бара­банной перепонки и вызывают ее колебания, которые усиливаются (поч­ти в 50 раз) системой слуховых косточек и передаются перилимфе и эндолимфе, затем воспринимаются волокнами основной мембраны. Вы­сокие звуки вызывают колебания коротких волоконец, низкие - более длинных, расположенных у вершины улитки. Эти колебания возбужда­ют рецепторные волосковые клетки кортиева органа. Далее возбуждение передается по слуховому нерву в височную долю коры больших полу­шарий, где происходят окончательный анализ и синтез звуковых сигна­лов. Ухо человека воспринимает звуки частотой от 16 до 20 тыс. Гц.

Проводящие пути слухового анализатора.Первый нейрон про­водящих путей слухового анализатора — упомянутые выше бипо­лярные клетки. Их аксоны образуют улитковый нерв, волокна ко­торого входят в продолговатый мозг и оканчиваются в ядрах, где расположены клетки второго нейрона проводящих путей. Аксоны клеток второго нейрона доходят до внутреннего коленчатого тела, главным образом противоположной стороны. Здесь начинается третий нейрон, по которому импульсы достигают слуховой области коры больших полушарий.

Помимо основного, проводящего пути, связывающего перифери­ческий отдел слухового анализатора с его центральным, корковым отделом, существуют и другие пути, через которые могут осуще­ствляться рефлекторные реакции на раздражение органа слуха у животного и после удаления больших полушарий. Особое значение имеют ориентировочные реакции на звук. Они осуществляются при участии четверохолмия, к задним и отчасти передним буграм ко­торого идут коллатерали волокон, направляющихся к внутреннему коленчатому телу.

19. Вестибулярный анализатор (локализация рецепторов, первое переключение, повторное переключение, проекционная зона). Проводниковый отдел. Переработка информации.

Вестибулярный аппарат. Представлен преддверием и полукруж­ными каналами и является органом равновесия. В преддверии имеются два мешочка, заполненные эндолимфой. На дне и во внутренней стенке мешочков расположены рецепторные волосковые клетки, к которым примыкает отолитовая мембрана с особыми кристаллами - отолитами, содержащими ионы кальция. Три полукружных канала расположены в трех взаимно перпендикулярных плоскостях. Основания каналов в местах их соединения с преддверием образуют расширения - ампулы, в ко­торых расположены волосковые клетки.

Рецепторы отолитового аппарата возбуждаются при ускоряющихся или замедляющихся прямолинейных движениях. Рецепторы полукруж­ных каналов раздражаются при ускоренных или замедленных враща­тельных движениях за счет передвижения эндолимфы. Возбуждение рецепторов вестибулярного аппарата сопровождается рядом рефлектор­ных реакций: изменением тонуса мышц, способствующих выпрямлению тела и сохранению позы. Импульсы от рецепторов вестибулярного ап­парата по вестибулярному нерву поступают в ЦНС. Вестибулярный ана­лизатор связан с мозжечком, который регулирует его деятельность.

Проводящие пути вестибулярного аппарата.Проводящий путь статокинетического аппаратаосуществляет передачу импульсов при измене­нии положения головы и тела, участвуя совместно с други­ми анализаторами в ориентировочных реакциях организма относительно окружающего пространства. Первый нейрон статокинетического аппарата находится в преддверном ган­глии, залегающем на дне внутреннего слухового прохода. Дендриты биполярных клеток преддверного узла формиру­ют преддверный нерв, образованный 6 ветвями: верхними, нижними, боковыми и задними ампулярными, утрикулярными и саккулярными. Они контактируют с чувствитель­ными клетками слуховых пятен и гребешков, расположен­ных в ампулах полукружных каналов, в мешочке и маточке преддверия перепончатого лабиринта.


20. Вестибулярный анализатор. Формирование чувства равновесия. Автоматический и сознательный контроль равновесия тела. Участие вестибулярного аппарата в регуляции рефлексов.

Вестибулярный аппарат выполняет функции восприя­тия положения тела в пространстве, сохранения равнове­сия. При любом изменении положения головы раз­дражаются рецепторы вестибулярного аппарата. Импульсы передаются в мозг, из которого к скелетным мыш­цам поступают нервные импульсы с целью коррекции по­ложения тела и движений. Вестибулярный аппарат состоит из двух частей: преддве­рия и полукружных каналов, в которых находятся рецепторы статокинетического анализатора.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: