Нуклеиновые кислоты мозга

Нуклеиновые кислоты – репликация ДНК в нейронах отсутствует, работает система репарации ДНК, в мозге экспрессируется несколько десятков тысяч уникальных генов, из которых не менее половины экспрессируется только в головном мозге – это говорит о высокой скорости транскрипции РНК, широко распространен альтернативный сплайсинг и интенсивное образование белка. Синтеза пиримидиновых нуклеотидов не происходит, т. к. нет карбамоилфосфатсинтетазы, для синтеза пуринов все есть. Содержание циклических нуклеотидов очень высокое, т. к. они участвуют в синаптической передаче нервного импульса.

Углеводы и их обмен в нервной системе

Спецификой углеводного обмена нервной системы является исключительная роль глюкозы для мозга. Глюкоза является основным источником энергии, так как клетки мозга не содержат ферментов для метаболизма липидов и других источников энергии.

Некоторая часть нейроглии способна запасать небольшое количество гликогена. Нейроны этой способностью не обладают.

Важной особенностью является повышенная доля обмена ди- и трикарбоновых кислот между матриксом митохондрий и цитозолем. Трикарбоновые кислоты с этом случае включаются в синтез нейромедиаторов.

Особая роль аэробных превращений глюкозы в энергетике мозга. Доля и роль гликолиза. Дополнительные источники энергии мозга. Основные системы, потребляющие энергию в мозгу (поддержание потенциала клеточных мембран, синтез белков, в особенности тубулярных, и др.).

Энергетический метаболизм мозга

Особенности обмена в нервной ткани:

1) много липидов, мало углеводов, нет их резерва

2) высокий обмен дикарбоновых кислот

3) глюкоза – основной источник энергии

4) мало гликогена, поэтому мозг зависит от поступления глюкозы с кровью

5) интенсивный дыхательный обмен

6) кислород используется постоянно и уровень не меняется

7) обменные процессы носят обособленный характер благодаря гематоэнцефалическому барьеру, высокая чувствительность к гипоксии и гипогликемии.

Гипоксия и окислительный стресс

Известно, что гипоксические, нейродегенеративные и возрастные нарушения в мозге характеризуются одними и теми же особенностями, в частности, накоплением активных форм кислорода (АФК). Выяснены тонкие молекулярные механизмы окислительного стресса в мозге и показана защитная функция природных антиоксидантов против апоптоза нейрональных клеток. Обнаружено, что Na/K АТФаза нейрональных мембран является мишенью для окислительного стресса. Установлен молекулярный механизм повреждения Na насоса, заключающийся в окислении сульфгидрильных групп и нарушении межсубъединичных взаимодействий в олигомерном комплексе фермента. Прослежена взаимосвязь между экзайтотоксическим действием глутамата и его агонистов на нейроны коры головного мозга и изменением активности Na/K АТФазы.

Систематические исследования антиоксидантной активности природного нейропептида карнозина показали его высокую эффективность по защите нейронов как в условиях in vitro (индивидуальные реакции повреждения макромолекул, суспензии изолированных нейронов или срезов мозга в условиях свободнорадикальной атаки), так и in vivo – на различных моделях экспериментальной ишемии мозга и сердца, гипобарической гипоксии, и т.д.

Установлено, что карнозин является важным природным фактором системы антиоксидантной защиты мозга в условиях окислительного стресса. Профессору А.А. Болдыреву и его ученикам принадлежит приоритет на практическое использование природного дипептида карнозина в качестве профилактического и терапевтического средства (имеются авторские свидетельства и патенты).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: