Нейроспецифичные белки

S 100 является специфическим белком астроцитарной глии, способным связывать кальций. Свое название белок получил благодаря свойству оставаться в растворенном состоянии в насыщенном растворе сульфата аммония. Семейство белков S 100 состоит из 17 тканеспецифичных мономеров, два из которых: α и β образуют гомо- и гетеродимеры, присутствующие в высокой концентрации в клетках нервной системы. S 100 (ββ) присутствует в высоких концентрациях в глиальных и шванновских клетках, гетеродимер S 100 (αβ) находится в глиальных клетках, гомодимер S 100 (αα) – в поперечнополосатых мышцах, печени и почках. Белок метаболизируется почками, его время полураспада составляет 2 часа. Астроглиальные клетки – это наиболее многочисленные клетки в мозговой ткани. Они образуют трехмерную сеть, которая является опорным каркасом для нейронов. Увеличение концентрации S 100 (αβ) и S 100 (ββ) в СМЖ и плазме является маркером повреждения головного мозга. При раннем определении содержания S 100 у пациентов с повреждениями мозга концентрация белка отражает степень повреждения мозга. Исследования S 100 полезны как для мониторинга, так и для определения прогноза течения заболевания.

Субарахноидальное кровоизлияние ведет к значительному увеличению уровня S 100 в СМЖ. Следует отметить, что при этом концентрация белка в плазме остается низкой. Концентрация S 100 значительно повышается в плазме у пациентов, оперированных в условиях искусственного кровообращения. Пик концентрации приходится на окончание экстракорпоральной циркуляции и затем уменьшается в неосложненных случаях. Замедление снижения концентрации S 100 у пациента в послеоперационный период говорит о наличии осложнений, о повреждении клеток мозга. Раннее определение и контроль уровня S 100, а также одновременные исследования S 100 и NSE позволяют выявить и подтвердить наличие повреждений мозга на ранней стадии, когда возможно успешное лечение. Тест S 100 также можно использовать для прогноза неврологических осложнений при обследовании пациентов с остановкой сердца.

Повышение белка S 100 в сыворотке крови и СМЖ при нарушениях мозгового кровообращения обусловлено активацией микроглии. Было показано, что в ранней фазе церебрального инфаркта микроглиальные клетки в периинфарктной зоне экспрессируют белки семейства S 100 и активно пролиферируют, причем белки экспрессируются не более трех дней после инфаркта. Это говорит о том, что активация постоянной популяции микроглии является ранним ответом мозговой ткани на ишемию и может быть использована как ранний маркер повреждения.

Свободные аминокислоты нервной системы

Аминокислоты являются для нервной ткани источником синтеза большого числа биологически важных соединений, таких как специфические белки, пептиды, нейромедиаторы, гормоны, витамины, биологически активные амины и др. Существенна также их энергетическая значимость, поскольку аминокислоты глутаминовой группы связаны с циклом трикарбоновых кислот.

Состав пула свободных аминокислот при нормальных физиологических условиях достаточно стабилен и характерен для мозга. Аминокислотный фонд мозга человека составляет в среднем 34 мкмоль на 1 г ткани, что превышает их содержание, как в плазме крови, так и в спинномозговой жидкости. Высокая концентрация – 75% фонда всех свободных аминокислот – приходится на дикарбоновые кислоты и их производные: глутаминовую кислоту, глутамин, аспарагиновую, N ацетиласпарагиновую и γ-аминомасляную (ГАМК) кислоты, причем ГАМК и N ацетиласпарагиновая кислоты локализованы почти исключительно в нервной ткани [2].

Постоянство качественного и количественного состава аминокислот в метаболических фондах мозга обеспечивается такими взаимосвязанными процессами, как поступление аминокислот из циркулирующей крови, отток их из мозга в кровь и участие в реакциях внутриклеточного метаболизма. В организме все эти процессы сбалансированы слаженным функционированием гомеостатических механизмов гематоэнцефалического барьера и мембранным транспортом аминокислот [3].

Системы активного транспорта аминокислот в мозг и из него энергозависимы. Изучение конкурентных отношений в транспорте аминокислот выявило наличие восьми типов транспортных систем, которые существуют для аминокислот с родственной структурой и зависят от ионного заряда и размеров их молекул.

Для мембранного транспорта аминокислот характерен ряд особенностей:

  • перенос аминокислот часто происходит против высоких концентрационных градиентов;
  • этот процесс энергозависим:
  • на него влияют температура и рН среды;
  • он ингибируется анаэробным состоянием клеток;
  • перенос аминокислот связан с активным мембранным транспортом ионов, например он Na+-зависим;
  • обнаружено конкурентное торможение мембранного транспорта одних аминокислот другими [3, 6].

Особенно велика специфичность и мощность транспортных систем для аминокислот, выполняющих роль медиаторов (глицин, ГАМК, таурин, глутаминовая кислота и др.). Эти системы не только обеспечивают пластические и энергетические нужды клетки, но и служат также для специфического быстрого снижения концентрации тормозных нейромедиаторов (глицин, ГАМК) в зоне синаптической щели.




double arrow
Сейчас читают про: