Тема 1.2. Регулирование физических процессов в электрических машинах и аппаратах

Основные понятия и термины по теме: электромагнитные и индукционные явления в электрических машинах и аппаратах; потери при работе машин и аппаратов; электрическая дуга в аппаратах; процессы коммутации в электрических машинах и аппаратах.

 

План изучения темы (перечень вопросов, обязательных к изучению):

1. Электромагнитные и индукционные явления в электрических машинах и аппаратах.

2. Потери при работе электрических машин и аппаратов.

3. Способы гашения электрической дуги в электроаппаратах

4. Схемы замещения и векторные диаграммы электрических машин

5. Процессы коммутации в электрических машинах и аппаратах

6. Способы улучшения коммутации в электрических машинах и аппаратах

Краткое изложение теоретических вопросов:

Возникновение в проводнике ЭДС индукции

Если поместить в магнитное поле проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии поля, то в проводнике возникнет электродвижущая сила, называемая ЭДС индукции.

ЭДС индукции возникнет в проводнике и в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями.

Если проводник, в котором наводится ЭДС индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой ЭДС по цепи потечет ток, называемый индукционным током.

Явление индуктирования ЭДС в проводнике при пересечении его силовыми линиями магнитного поля называется электромагнитной индукцией.

Электромагнитная индукция — это обратный процесс, т. е. превращение механической энергии в электрическую.

Явление электромагнитной индукции нашло широчайшее применение в электротехнике. На использовании его основано устройство различных электрических машин.

Величина и направление ЭДС индукции

Рассмотрим теперь, каковы будут величина и направление индуктированной в проводнике ЭДС.

Величина ЭДС индукции зависит от количества силовых линий поля, пересекающих проводник в единицу времени, т. е. от скорости движения проводника в поле.

Величина индуктированной ЭДС находится в прямой зависимости от скорости движения проводника в магнитном поле.

Величина индуктированной ЭДС зависит также и от длины той части проводника, которая пересекается силовыми линиями поля. Чем большая часть проводника пересекается силовыми линиями поля, тем большая ЭДС индуктируется в проводнике. И, наконец, чем сильнее магнитное

поле, т. е. чем больше его индукция, тем большая ЭДС возникает в проводнике, пересекающем это поле.

Итак, величина ЭДС индукции, возникающей в проводнике при его движении в магнитном поле, прямо пропорциональна индукции магнитного поля, длине проводника и скорости его перемещения.

Зависимость эта выражается формулой        Е = Blv,

где Е — ЭДС индукции; В — магнитная индукция; I — длина проводника; v — скорость движения проводника.

Следует твердо помнить, что в проводнике, перемещающемся в магнитном поле, ЭДС индукции возникает только в том случае, если этот проводник пересекается магнитными силовыми линиями поля. Если же проводник перемещается вдоль силовых линий поля, т. е. не пересекает, а как бы скользит по ним, то никакой ЭДС в нем не индуктируется. Поэтому приведенная выше формула справедлива только в том случае, когда проводник перемещается перпендикулярно магнитным силовым линиям поля.

Направление индуктированной ЭДС (а также и тока в проводнике) зависит от того, в какую сторону движется проводник.

ЭДС индукции в катушке

Мы уже говорили, что для создания в проводнике ЭДС индукции необходимо перемещать в магнитном поле или сам проводник, или магнитное поле. В том и другом случае проводник должен пересекаться магнитными силовыми линиями поля, иначе ЭДС индуктироваться не будет. Индуктированную ЭДС, а следовательно, и индукционный ток можно получить не только в прямолинейном проводнике, но и в проводнике, свитом в катушку.

При движении внутри катушки постоянного магнита в ней индуктируется ЭДС за счет того, что магнитный поток магнита пересекает витки катушки, т. е. точно так же, как это было при движении прямолинейного проводника в поле магнита.

Если магнит опускать в катушку медленно, то возникающая в ней ЭДС будет настолько мала, что стрелка прибора может даже не отклониться. Если же, наоборот, магнит быстро ввести в катушку, то отклонение стрелки будет большим. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от скорости движения магнита, т. е. от того, насколько быстро силовые линии поля пересекают витки катушки. Если теперь поочередно вводить в катушку с одинаковой скоростью сначала сильный магнит, а затем слабый, то можно заметить, что при сильном магните стрелка прибора будет отклоняться на больший угол. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от величины магнитного потока магнита.

Потери мощности в электрических машинах.

Преобразование механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе сопровождается некоторыми потерями энергии, которые выделяются в виде тепла, нагревая электрическую машину.

Энергетические диаграммы генератора и двигателя наглядно показывают баланс мощности в этих машинах. Как видно из них, при работе электрической машины возникают потери мощности: электрические, магнитные, механические и добавочные.

 

Электрические потери появляются в результате того, что каждая обмотка (в машине постоянного тока обмотки якоря, возбуждения, добавочных полюсов и компенсационная) обладает определенным сопротивлением, препятствующим прохождению по ней электрического тока. Они пропорциональны сопротивлению данной обмотки и квадрату протекающего по ней тока, т. е. сильно возрастают с увеличением нагрузки машины. Электрические потери вызывают нагрев проводов обмоток. К электрическим потерям относятся также потери, возникающие при протекании тока через щетки и через переходное сопротивление между щетками и коллектором; они вызывают нагрев коллектора и щеток.

Магнитные потери (потери в стали) возникают в сердечниках якоря и полюсов (главным образом, в полюсных наконечниках) в результате перемагничивания стали этих сердечников и образования в них вихревых токов. Перемагничивание стали сердечника якоря происходит потому, что при вращении якоря каждая его точка попеременно проходит то под северным, то под южным полюсам. Перемагничивание стали полюсных наконечников вызывается в результате изменения магнитной индукции в воздушном зазоре машины в пределах ±?В при вращении зубчатого якор. При этом в прилегающих к зазору ферромагнитных элементах магнитной системы (полюсных наконечниках и зубцах якоря) индуцируются вихревые токи, изменяющиеся с высокой частотой (1000 Гц и более) и сосредоточенные, главным образом, на их поверхности. Поэтому потери мощности, созданные этими токами, называют поверхностными.

Механические потери возникают в результате трения: в подшипниках, щеток по коллектору, деталей машины о воздух в процессе вентиляции. Эти потери вызывают нагрев подшипников, коллектора и щеток, с увеличением нагрузки они возрастают незначительно. При повышении частоты вращения якоря электрической машины механические потери резко возрастают.

Современные средства улучшения коммутации сводятся, главным образом, к устранению коммутационных и потенциальных причин искрения.

1. Применение добавочных полюсов.

Безыскровая коммутация в машине будет при прямолинейной коммутации и имеет место если iк=0. Добавочный ток iк полностью исчезает, если коммутационная ЭДС ек уравновешивает реактивную ЭДС ep. Для создания соответствующей eк в зоне коммутации между главными полюсами устанавливают добавочные полюсы. МДС (магнитодвижущая сила) добавочных полюсов Fк должна быть направлена против МДС реакции якоря Fq, чтобы скомпенсировать ее в зоне коммутации (ЭДС от поля реакции якоря стремится замедлить коммутацию) и создать, сверх того, поле для компенсации реактивной ЭДС ep. Важно при этом правильно определить полярность добавочных полюсов: в генераторе за главным полюсом должен следовать по направлению вращения добавочный полюс противоположной полярности, а в двигателе наоборот

Для того, чтобы компенсация ЭДС ep и eксуществовала при всех значениях тока якоря, обмотка добавочных полюсов соединяется последовательно с якорем, а сердечник этих полюсов делается ненасыщенным. В малых машинах без добавочных полюсов требуемая компенсация может быть достигнута путем некоторого сдвига щеток, а следовательно и коммутационной зоны с геометрической нейтрали: у генераторов – в сторону вращения якоря, у двигателей – против его вращения.

2. Применение компенсационной обмотки.

Для эффективной компенции МДС поперечной реакции якоря и улучшения коммутации в полюсных наконечниках главных полюсов предусматривают устройство пазов, в которые укладывают компенсационную обмотку (рис.1). Эта обмотка включается последовательно в цепь якоря с целью автоматической компенсации Fq при всех нагрузках. Закон распределения МДС компенсационной обмотки в воздушном зазоре имеет вид почти зеркального отображения МДС реакции якоря Fq.

3. Применение твердых сортов щеток.

Некоторое уменьшение тока можно достигнуть увеличением сопротивления контакта щеток Rщ, что осуществляется применением более твердых сортов. В машинах постоянного тока применяют угольно–графитные (УГ), графитные (Г), электрографитированные (ЭГ), медно–графитные (МГ) и бронзо–графитные (БГ) щетки. С целью улучшения коммутации целесообразно применять твердые щетки (УГ, Г, ЭГ), так как они обладают наибольшей величиной переходного сопротивления. Однако допускаемая плотность тока твердых щеток невелика, поэтому их применение ведет к необходимости увеличения площади щеточного контакта, что требует увеличения габаритов коллектора. На судах обычно используются графитные и электрографитированные щетки. Для этих же целей в крупных машинах применяют разрезные щетки, которые обеспечивают, кроме того, и лучший контакт щетки с коллектором.

Практические занятия

- Расчет потерь в трехфазном асинхронном двигателе серии АИР.

- Выполнение расчетов переходного сопротивления контактов в электрических аппаратах.

- Определение процессов коммутации в электрических машинах.

- Построение механических характеристик для электрических машин

 

Задания для самостоятельного выполнения

Определите особенности параллельной работы синхронных генераторов.

Изучите особенности схемы пуска однофазных асинхронных двигателей.

Изучите принципы точной синхронизации электрических машин.

Форма контроля самостоятельной работы:

- устный опрос, проверка конспекта и таблиц, составление презентаций.

Вопросы для самоконтроля по теме:

1. Электрическая машина в которой частота вращения магнитного поля статора и ротор вращается с одинаковой частотой, называется?

1) асинхронная                      2) машина постоянного тока

3) синхронная                        4) трансформатор.

2. Причины искрения на коллекторе вызванные при возникновении напряжения между смежными коллекторными пластинами называются:

1) механические                   2) коммутационные

3) потенциальные               4) компенсационные

3. Согласно действующим стандартам, если допустимая степень искрения в паспорте машины не указана, то при номинальной нагрузки она не должна превышать:

1) степень 1 1/2;   2) степень 1 1/4;          3) степень 1               4) степень 2

4. Как уменьшить искрение щеток в коллекторных машинах постоянного тока малой мощности?

1) Сдвигом щеток с геометрической нейтрали.

2) Постановкой дополнительных полюсов.

3) Постановкой компенсационной обмотки.

4) Сдвигом щеток и постановкой дополнительных полюсов.

5) Постановкой дополнительной и компенсационной обмоток.

5. Что происходит в якоре генератора постоянного тока при нагрузке?

1) Индуктируется ЭДС.

2) Механическая энергия преобразуется в электрическую путем индуктирования ЭДС и тока в якорной обмотке.

3) Электрическая энергия преобразуется в механическую путем воздействия электромагнитных сил на проводники с током, находящиеся в магнитном потоке.

4) Возникает электромагнитная сила.

5) Индуктируется ЭДС и возникает электромагнитная сила.

6. На что влияет явление близости двух параллельных проводников с одинаковыми направлениями токов?

1) Увеличивает электродинамические силы между проводниками.

2) Уменьшает электродинамические силы между проводниками.

3) Электродинамические силы остаются без изменения.

7. Какая величина имеет наибольшее значение при расчете электромагнита переменного тока?

1) Активное сопротивление обмотки.      2) Индуктивное сопротивление обмотки.

3) Потери в стали сердечника.                  4) Противо ЭДС.

8. Какие дугогасительные камеры наиболее эффективны?

1) С широкой щелью.                              2) С узкой щелью.

3) Многократные щелевые.                  4) Лабиринтные.

9. Почему пусковой момент асинхронного двигателя при введении реостата в фазный ротор увеличивается?

1) Увеличивается индуктивное сопротивление ротора.

2) Увеличивается активное сопротивление ротора.

3) Увеличивается активная составляющая роторного тока. 4) Уменьшается роторный ток.

 


 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: