Методические указания

Практическая работа

Тема: Свойства диэлектриков.

Цель: Изучить физико-механические и химические свойства диэлектриков.

 

Содержание отчета:

 

1. Перечислите, физико-механические и химические свойства диэлектриков.

2. Назовите, влажностные свойства диэлектриков и дайте их краткую характеристику.

3. Опишите,  какие величины характеризуют тепловые свойства диэлектриков и как их определяют.

4. Дайте определение радиационной стойкости диэлектриков и напишите, к чему приводит воздействие радиации на диэлектрик.

5. Составьте кроссворд по данной теме на 15 слов.

6.  Напишите вывод по проделанной работе.

 

Методические указания

Диэлектрики – вещества, обладающие малой электропроводностью, т.к. у них очень мало свободных заряженных частиц – электронов и ионов. Эти частицы появляются в диэлектриках только при нагреве до высоких температур.  Существуют диэлектрики газообразные (газы, воздух), жидкие (масла, жидкие органические вещества) и твердые (парафин, полиэтилен, слюда, керамика и т.п.).

  При наложении электрического напряжения в диэлектрике, представляющем сложную электрическую систему, протекают разнообразные электрические процессы, связанные с его поляризацией, электрической проводимостью. В случае очень большого напряжения может произойти разрушение диэлектрика, называемое пробоем. Эти процессы определяют свойства диэлектриков, а, следовательно, надежность их работы в электроустановках.

   Физико – механические и химические свойства диэлектриков

При выборе изоляционного материала приходится учитывать не только электрические свойства, но и влажностные, тепловые, химические, механические свойства, химическую стойкость и активность диэлектрика его тропикостойкость и радиационную стойкость.

                        Влажностные свойства диэлектриков

  Влагостойкость – это надежность эксплуатации изоляции при нахождении ее в атмосфере водяного пара близкого к насыщению. Влагостойкость оценивают по изменению электрических, механических и других физических свойств после нахождения материала в атмосфере с повышенной и высокой влажностью; по влаго- и водопроницаемости; по влаго- и водопоглощаемости.

Влагопроницаемость – способность материала пропускать пары влаги при наличии разности относительных влажностей воздуха с двух сторон материала.

Влагопоглощаемость – способность материала сорбировать воду при длительном нахождении во влажной атмосфере близкой к состоянию насыщения.

Водопоглощаемость – способность материала сорбировать воду при длительном погружении его в воду.

Тропикостойкость и тропикализация оборудования защита электрооборудования от влаги, плесени, грызунов.

                    Тепловые свойства диэлектриков

Для характеристики тепловых свойств диэлектриков используются следующие величины.

Нагревостойкость – способность электроизоляционных материалов и изделий без вреда для них выдерживать воздействие высокой температуры и резких смен температуры. Определяют по температуре, при которой наблюдается существенное изменение механических и электрических свойств, например, в органических диэлектриках начинается деформация растяжения или изгиба под нагрузкой.

Теплопроводность – процесс передачи тепла в материале. Характеризуется экспериментально определяемым коэффициентом теплопроводности λт. λт – количество теплоты, переданной за одну секунду через слой материала толщиной в 1 м и площадью поверхности – 1 м2 при разности температур поверхностей слоя в 1 °К. Коэффициент теплопроводности диэлектриков изменяется в широких пределах. Самые низкие значения λт имеют газы, пористые диэлектрики и жидкости (для воздуха λт = 0,025 Вт/(м·К), для воды λт = 0,58 Вт/(м·К)), высокие значения имеют кристаллические диэлектрики (для кристаллического кварца λт = 12,5 Вт/(м·К)). Коэффициент теплопроводности диэлектриков зависит от их строения (для плавленого кварца λт = 1,25 Вт/(м·К)) и температуры.   Тепловое расширение диэлектриков оценивают температурным коэффициентом линейного расширения: . Материалы с малым тепловым расширением, имеют, как правило, более высокую нагревостойкость и наоборот. Тепловое расширение органических диэлектриков значительно (в десятки и сотни раз) превышает расширение неорганических диэлектриков. Поэтому стабильность размеров деталей из неорганических диэлектриков при колебаниях температуры значительно выше по сравнению с органическими.

                      Радиационная стойкость диэлектриков

Современная техника может подвергаться воздействию корпускулярных или волновых излучений высокой энергии, которое изменяет физические и химические свойства материалов. Степень стойкости физико-химических свойств материала, степень сохранения ими электрических, механических и других свойств к воздействию излучения называется радиационной стойкостью.

Взаимодействие излучения с веществом зависит от природы вещества и излучения. Рассеяние энергии излучения происходит в основном за счет ионизации (внутренний фотоэффект), возбуждения атомов, комптоновского рассеяния, при очень больших энергиях из-за ядерных преобразований. Часть энергии излучения расходуется на выбивание атомов в междоузлия, т.е. на создание дефектов структуры – вакансий и междоузельных атомов, в основном в поверхностном слое материала. Но воздействие излучений, обладающих большой длиной пробега частиц, например, нейтронов,      вызывает нарушение структуры по всему объему облучаемого материала.

Воздействие излучения может сопровождаться химическими превращениями - разрываются и перемещаются химические связи, образуются свободные радикалы. Так в органических полимерах происходит выделение газов, образование и ликвидация двойных связей, полимеризация образование поперечных связей, вулканизация. Химические превращения сопровождаются изменением физических свойств материала.

Стойкие к воздействию излучения материалы должны:

·  обладать способностью поглощать энергию без чрезмерной ионизации;

· обладать способностью в большей степени образовывать двойные связи, чем обнаруживать разрыв связей.

Наиболее стойкими к облучению неорганическими диэлектриками являются: кварц, слюда, глинозем, оксид циркония оксид бериллия и слюдяные материалы со стекловидным связующим. Воздействие излучения приводит у них к снижению удельного сопротивления и электрической прочности, После прогрева облученных неорганических диэлектриков при высоких температурах (отжига) у них возможно восстановление первоначальных свойств. Изучение влияния радиоактивного излучения на органические полимеры: полиэтилен, полистирол, синтетический и натуральный каучуки и др. – показывает, что ароматические соединения проявляют большую стойкость к действию радиации по сравнению с алифатическими соединениями. Полагают, что бензольные кольца поглощают значительную часть радиоактивного излучения без деструкции. В результате повышается радиационная устойчивость соединений с бензольными кольцами (полистирол) по сравнению с полимерами алифатического ряда без бензольных колец (полиэтилен, фторопласт). Наименее устойчивы к действию радиации полидиметилсилоксаны. Фенильные группы в полимерах увеличивают стойкость к радиации.

                     Электроизоляционные материалы

Электроизоляционные материалы классифицируются по:

· агрегатному состоянию – газообразные, жидкие, твердые и твердеющие (лаки, компаунды) материалы;

· по химической природе – органические, неорганические, элементоорганические материалы.

                  Газообразные диэлектрики

Воздух и газы являются идеальными диэлектриками до процесса их ионизации. При ионизации космической радиацией, нагревом их электроизоляционные свойства резко снижаются.

Электрическая прочность воздуха при нормальном давлении 2,1 МВ/м. Электрическая прочность воздуха заметно зависит от частоты электрического поля. Воздух при высоком давлении превосходит по электрической прочности такие диэлектрики, как фарфор и трансформаторное масло.

                         Жидкие диэлектрики

Подразделяются на 3 группы:

1) нефтяные масла;

2) синтетические жидкости;

3) растительные масла.

Жидкие диэлектрики используют для пропитки кабелей высокого напряжения, конденсаторов, для заливки трансформаторов, выключателей и вводов. Кроме этого они выполняют функции теплоносителя в трансформаторах, дугогасителя в выключателях и др.

Нефтяные масла

Нефтяные масла представляют собой смесь углеводородов парафинового (СnН2n+2) и нафтенового (СnН2n) рядов. Они широко применяются в электротехнике в качестве трансформаторного, кабельного и конденсаторного масел. Масло, заполняя промежутки и поры внутри электротехнических установок и изделий, повышает электрическую прочность изоляции и улучшает теплоотвод от изделий.

Трансформаторное масло получают из нефти путем перегонки. Электрические свойства трансформаторного масла в значительной степени зависят от качества очистки масла от примесей, содержания в нем воды и степени обезгаживания. Диэлектрическая проницаемость масла 2,2, удельное электрическое сопротивление 1013 Ом·м.

Назначение трансформаторных масел – повышать электрическую прочность изоляции; отводить тепло; способствовать дугогашению в масляных выключателях, улучшать качество электроизоляции в электротехнических изделиях: реостатах, бумажных конденсаторах, кабелях с бумажной изоляцией, силовых кабелях - путем заливки и пропитки.

Трансформаторное масло в процессе эксплуатации стареет, что ухудшает его качество. Старению масла способствуют: контакт масла с воздухом, повышенные температуры, соприкосновение с металлами (Сu, Рb, Fе), воздействие света. Для увеличения срока службы масло регенерируют очисткой и удалением продуктов старения, добавлением ингибиторов.

Кабельное и конденсаторное масла отличаются от трансформаторного более высоким качеством очистки.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: