Закон радиоактивного распада

Число радиоактивных ядер, которые еще не распались убывает со временем, согласно закону:

N=N0 e-λt

N – число ядер, не распавшихся за время t.

N0 – число не распавшихся ядер в начальный момент времени (t=0)

λ – постоянная распада,  она различна для разных радиоактивных веществ.

Период полураспада – это время, в течение которого распадается половина радиоактивных ядер.

T=ln2/λ

Активность радиоактивного препарата – число ядер этого препарата, распадающихся за секунду.

Единица активности – беккерель (Бк). Наиболее употребляемой единицей является кюри (Ки).

1 Ки=3,7*1010 Бк=3,7*1010 с-1.

Внесистемная единица активности – резерфорд (Рд). 1 Рд=106 Бк.

Виды радиоактивного распада: α-распад, β-распад. Характеристики радиоактивных излучений.

Альфа-распад - самопроизвольное превращение ядра с испусканием альфа-частицы (ядра гелия) и квантов λ-излучения.

Различают три вида бета-распада:

  1. β- -распад. Проявляется в вылете из ядра электрона (β-) и антинейтрино.
  2. β+ -распад. Образование позитронов и нейтрино.

Энергия, выделяющаяся при β-распаде, распределяется между бета-частицей и нейтрино или антинейтрино.

  1. е-захват. Заключается в захвате ядром одного из внутренних электронов атома, в результате чего протон ядра превращается в нейтрон.

Характеристики радиоактивных излучений.

  1. Активность радиоактивного препарата – число ядер этого препарата, распадающихся за секунду.Единица активности – беккерель (Бк). Наиболее употребимой единицей является кюри (Ки).
  2. Дозой облучения называется энергия излучения, поглощенная в единице объема или массы вещества за все время воздействия излучения. Доза облучения, характеризует степень ионизации вещества: чем больше доза, тем больше степень этой ионизации. Является мерой поражающего действия радиоактивных излучений на организм человека.
  3. Уровень радиации (мощность дозы) характеризует интенсивность излучения. Это доза, создаваемая за единицу времени и характеризующая скорость накопления дозы. Измеряется в рентгенах в час (Р/ч). Чем больше уровень радиации (фон), тем меньше времени должны находиться на загрязненном участке люди, чтобы полученная ими Доза облучения не превысила допустимую.
  4. Степень загрязнения радиоактивными веществами характеризуется плотностью загрязнения, которая измеряется количеством радиоактивных распадов атомов, происходящих за единицу времени на единице поверхности, в единице массы или объема, т. е. единицами удельной активности. Знание степени загрязнения позволяет оценить вредное биологическое воздействие радиоактивно загрязненных предметов и веществ при соприкосновении с ними или попадании их внутрь организма.

 


ЯДЕРНЫЕ СИЛЫ

В состав ядра входят протоны и нейтроны. Между одинаково заряженные протонами действуют электростатические силы отталкивания, однако ядро не "разлетается" на отдельные частицы. Между протонами и нейтронами внутри ядра действуют ядерные силы - силы притяжения, намного превосходящие электростатические.

Ядерные силы по величине в 100 раз превосходят электростатические и называются сильным взаимодействием.
Ядерные силы проявляются лишь на расстояниях внутри ядра, поэтому считаются короткодействующими, в то время как электростатические силы - дальнодействующими.

Энергия взаимодействия нуклонов велика; она называется внутриядерной, или ядерной.
Протоны и нейтроны, входящие в состав любого ядра, не являются неделимыми элементарными частицами, а состоят из кварков.

Кварки, в свою очередь, взаимодействуют друг с другом, непрерывно обмениваясь глюонами - переносчиками истинно сильного взаимодействия (оно в тысяче раз сильнее того, которое действует между протонами и нейтронами в ядре). В результате протоны и нейтроны оказываются очень сильно связанными системами, которые невозможно разбить на составные части.

 


 




Ядерные реакции

Первая ядерная реакция

Ядерными реакциями называют превращение одних ядер в другие при взаимодействии с какими-то частицами.

В начале развития ядерной физики учёные располагали лишь одним «орудием» для «разбития» ядра – это альфа-частицы, которые при радиоактивном распаде излучали радиоактивные препараты.

Первая ядерная реакция была осуществлена Резерфордом. Он бомбардировал атомы азота α-частицами, в результате получался кислород и вылетал протон.

Джеймс Чедвик при бомбардировке α-частицами бериллия обнаружил, что из ядра бериллия вылетает нейтрон и получается ядро углерода.

Однако α-частицы не всегда способны разбить ядро, так как они также обладают положительным зарядом и, при определённых условиях, электрическое отталкивание со стороны ядра настолько большое, что α-частица не сможет с ним столкнуться.

Ускорители заряженных частиц. Законы сохранения при ядерных реакциях

Следующий этап исследований ядерных реакций был связан с конструированием ускорителей заряженных частиц (см. Рис. 1). В данных приборах частицы разгонялись и, вылетая из ускорителя, ударялись об исследуемые ядра. Хотя мощность первых установок была невелика, но разгонявшиеся в них протоны или дейтроны были более эффективными для создания ядерных реакций, чем α-частицы. Это объясняется тем, что протоны имеют заряд равный единице и энергия электрического отталкивания при взаимодействии с ядром у них в два раза меньше.

Впервые ускоренный протон использовали для взаимодействия с ядром лития , при этом ядро разбивалось на две α-частицы (два ядра гелия).

Данная реакция имела большой энергетический выход, около . Ещё больше энергии выделилось при реакции, в которой разогнанный ускорителем дейтрон попал в ядро лития и также разбил его на два ядра гелия.

Характерной особенностью ядерных реакций является выполнение законов сохранения. То есть сумма зарядовых чисел до реакции должна быть равна сумме зарядовых чисел после реакции. Также выполняется закон сохранения массового числа. Однако масса ядер, которые вошли в реакцию, не равны массе ядер, которые вышли из реакции.

Энергетический выход реакции равен:

На примере предыдущей реакции:

Эта энергия распределяется между двумя α-частицами.

Каждая такая частица приобретает энергию, следовательно, приобретает скорость. Если вычислить по формулам теории относительности изменение массы этих α-частиц, то, с большой степенью точности, получим закон сохранения масс, учитывая релятивистские эффекты. То есть массу «уносят» с собой α-частицы.

Реакции на нейтронах

Третьим этапом исследования ядерных реакций были реакции на нейтронах. Нейтрон является нейтральной частицей, поэтому он не испытывает электрического отталкивания ядра. Следовательно, реакции на нейтронах практически не требуют энергетических затрат (необходимо ждать, пока ядро захватит нейтрон при подходе последнего на расстояние ).

Одна из первых таких реакций была реакция захвата нейтрона ядром алюминия, в итоге оно распадается и образуется ядро натрия, при этом вылетает α-частица.

Задача 1

При бомбардировке ядер изотопа азота нейтронами образуется изотоп бора . Какая ещё частица образуется в этой реакции? Варианты ответа: 1. протон; 2. 2 протона; 3. 2 нейтрона; 4. α-частица.

Решение

Зарядовое и массовое число установим по законам сохранения.

Общее зарядовое число после реакции должно быть равно 7, следовательно:

Массовое число после реакции должно быть равно 15. У бора оно равно 11, поэтому у неизвестного элемента это число – 4.

Неизвестный элемент имеет заряд равный двум, а массу – четыре. Следовательно, это α-частица.

Ответ: 4. α-частица

Термоядерная реакция

Термоядерная реакция – реакция синтеза лёгких ядер. Синтез лёгких ядер может происходить только при высоких температурах, так как эти ядра должны разогнаться до энергии, при которой могут сблизиться на расстояние, равное радиусу ядра (). Эта энергия должна быть порядка десятков МэВ.

Например, дейтрон может провести вместе с тритием реакцию синтеза. При этом получается гелий (очень устойчивое ядро) и выбрасывается нейтрон. Энергетический выход этой реакции равен .

Если вступает в реакцию 1 моль дейтерия (2 г) и 1 моль трития (3тг), то произойдёт (число Авогадро) таких реакций. Следовательно, общий выход энергии будет равен:

Чтобы получить такую энергию при сжигании керосина, необходимо топлива.

 

Домашнее задание

  1. конспект
  2. Рассчитать энергетический выход реакции .
  3. Ядро , захватывая протон, распадается на две α-частицы. Определить сумму кинетических энергий этих частиц. Кинетической энергией протона пренебречь.

 

 


 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: