Электроёмкостью конденсатора называют физическую величину, численно равную отношению заряда конденсатора к напряжению на его пластинах

Обозначается ёмкость конденсатора большой латинской буквой С. А единицей ёмкости в СИ является фарад (Ф), названная так, как вы догадались, в честь Майкла Фарадея. 1 Ф — это такая ёмкость конденсатора, при которой заряд, равный 1 Кл, создаёт между обкладками конденсатора напряжение 1 В.

1 Ф — это очень большая электроёмкость. Например, в вакууме электроёмкостью один фарад обладал бы шар радиусом 9 000 000 километров (для сравнения: радиус Солнца примерно равен 696 000 километрам, а нашей планеты — всего 6400 километров). Поэтому на практике применяют дольные единицы фарада:

Например, электроёмкость такого огромного конденсатора, как земной шар, составляет 710 мкФ.

Физическая величина, характеризующая свойства изолирующей (диэлектрической) среды, называется диэлектрической проницаемостью. Она показывает, во сколько раз сила взаимодействия двух электрических зарядов в этой среде меньше, чем в вакууме.

Таким образом, ёмкость плоского конденсатора зависит от площади пластин, расстояния между ними и свойств внесённого в конденсатор диэлектрика. Она прямо пропорциональна площади пластин и обратно пропорциональна расстоянию между ними.

В СИ коэффициентом пропорциональности между электроёмкостью конденсатора и определяющими её величинами является электрическая постоянная.

Полученный нами экспериментальным путём вывод о зависимости ёмкости плоского конденсатора от его параметров очень важен в практическом отношении. Он указывает способы изменения ёмкости. Например, в одних конденсаторах ёмкость можно изменить, повернув рукоятку и уменьшив или увеличив при этом площадь пластин.

А в других используется зависимость электроёмкости от расстояния между обкладками. Такие конденсаторы используют, например, в схемах кодирования клавиатуры персонального компьютера. Под каждой клавишей находится конденсатор, электроёмкость которого изменяется при нажатии на клавишу. Микросхема, подключённая к каждой клавише, при изменении электроёмкости выдаёт кодированный сигнал, соответствующий данной букве.

Идём дальше. Вы знаете, что любые заряженные тела создают в пространстве вокруг себя электростатическое поле, силовой характеристикой которого является напряжённость.

Напомним, что напряжённость — это физическая векторная величина, характеризующая электрическое поле в данной точке и численно равная отношению силы, действующей на неподвижный пробный заряд, помещённый в эту точку поля, к величине заряда.

Рассмотрим электростатическое поле заряженного плоского конденсатора.

Как видно, оно в основном сосредоточено между его обкладками. Обратите внимание, что линии напряжённости электрического поля плоского конденсатора параллельны и расположены на одинаковом расстоянии друг от друга. Значит поле такого конденсатора однородно. Но вблизи краёв пластин однородность поля нарушается, однако этим часто пренебрегают, когда расстояние между пластинами значительно меньше их размеров.

Энергию электрического поля конденсатора можно рассчитать по формуле:

Воспользовавшись формулой для электроёмкости, можно получить ещё две формулы для расчёта энергии электрического поля конденсатора.

В настоящее время конденсаторы находят широкое применение во многих областях науки и техники. В связи с этим конденсаторы можно классифицировать по следующим признакам и свойствам:

по назначению — это конденсаторы постоянной и переменной ёмкости.

по форме обкладок — различают конденсаторы плоские, сферические, цилиндрические и другие;

а также по типу диэлектрика — это, например, бумажные, керамические, электролитические конденсаторы и так далее.

Наиболее распространённым типом конденсаторов является бумажный конденсатор. Он представляет собой две ленты металлической фольги, разделённые тонкой парафинированной бумагой, полистиролом, слюдой или другим диэлектриком, которые свёрнуты в тугую спираль и запаяны.

Для получения очень больших электроёмкостей используют электролитические конденсаторы. В качестве диэлектрика в них применяют тонкую плёнку окиси алюминия, нанесённую на металлическую пластину, являющуюся одной из обкладок. Роль второй обкладки играет электролит, контактирующий с металлическим корпусом. Ёмкость таких конденсаторов может достигать сотен и тысяч микрофарад.

В последнее время широкое применение находят керамические конденсаторы. Диэлектриком в них служит специальная керамика. Электрическая ёмкость таких конденсаторов достигает сотен пикофарад.

 

Соединение конденсаторов в батарею (см. опорный конспект «Соединение конденсаторов в батарею» и задания)

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: