Органические диэлектрики : виды, свойства и применение

Лекция №15. Органические диэлектрики и смазочные материалы.

Цель: получить основные сведения об органических диэлектриках и смазочных материалах, их свойствах,способах получения и области применения.

Образовательные результаты по ФГОС:                                                                                                                   Знать: виды, свойства и области применения органических диэлектриков, используемых в производстве;                                                                                                                                                                            классификацию и свойства смазочных материалов.                                                                                                                                Уметь: определять свойства и классифицировать смазочные материалы,применяемые в производстве, по составу,назначению и способу приготовления;                                                                                        различать основные конструкционные материалы по диэлектрическим свойствам.                                                                                                                                  Задание: составить конпект лекции,выделить главное.

 

План.

Тема: 1. Органические диэлектрики: виды, свойства и применение.

         2. Смазочные материалы: виды, свойства и применение.

Органические диэлектрики: виды, свойства и применение.

Органические диэлектрики: полимеры, воски, лаки, резины, бумаги, лакоткани. Особенности органических диэлектриков - горючи (в основном), малостойки к атмосферным и эксплуатационным воздействиям, имеют (в основном) простую технологию изготовления, как правило, более дешевы по сравнению с неорганическими диэлектриками. Старение на постоянном напряжении практически отсутствует, на переменном напряжении стареют за счет частичных разрядов, дендритов и водных триингов. Применение в энергетике:

- линейная и подстанционная изоляция - это фарфор, стекло и кремнийорганическая резина в подвесных изоляторах ВЛ, фарфор в опорных и проходных изоляторах, стеклопластики в качестве несущих элементов, полиэтилен, бумага в высоковольтных вводах, бумага, полимеры в силовых кабелях;

- изоляция электрических приборов - бумага, гетинакс, стеклотекстолит, полимеры, слюдяные материалы;

- машин, аппаратов - бумага, картон, лаки, компаунды, полимеры;

- конденсаторы разных видов- полимерные пленки, бумага, оксиды, нитриды.

С практической точки зрения в каждом случае выбора материала электрической изоляции следует анализировать условия работы и выбирать материал изоляции в соответствии с комплексом требований. Для ориентировки целесообразно разделить основные диэлектрические материалы на группы по условиям применения.

1.Нагревостойкая электрическая изоляция. Это в первую очередь изделия из слюдяных материалов, некоторые из которых способны работать до температуры 700 °С. Стекла и материалы на их основе (стеклоткани, стеклослюдиниты). Органосиликатные и металлофосфатные покрытия. Керамические материалы, в частности нитрид бора. Композиции из кремнийорганики с термостойким связующим. Из полимеров высокой нагревостойкостью обладают полиимид, фторопласт.                                                                                                                                                              2. Влагостойкая электрическая изоляция. Эти материалы должны быть гидрофобны (несмачивание водой) и негигроскопичны. Ярким представителем этого класса является фторопласт. В принципе возможна гидрофобизация путем создания защитных покрытий на других негидрофобных диэлектриках.

3. Радиационно стойкая изоляция. Это, в первую очередь, неорганические пленки, керамика, стеклотекстолит, слюдинитовые материалы, некоторые виды полимеров (полиимиды, полиэтилен). 4. Тропикостойкая изоляция. Материал должен быть гидрофобным, чтобы работать в условиях высокой влажности и температуры. Кроме того, он должен быть стойким против плесневых грибков. Лучшие материалы: фторопласт, некоторые другие полимеры, худшие - бумага, картон.                          5. Морозостойкая изоляция. Это требование характерно, в основном для резин, т.к. при понижении температуры все резины теряют эластичность. Наиболее морозостойка кремнийорганическая резина с фенильными группами (до -90°С).                                                                                                                                              6. Изоляция для работы в вакууме (космос, вакуумные приборы). Для этих условий необходимо использовать вакуумно-плотные материалы. Пригодны некоторые, специально приготовленные керамические материалы, малопригодны полимеры.                                                                                  Свойства наиболее применяемых диэлектриков.                                                                                   Полимерные материалы. Полимеры, как правило, являются хорошими диэлектриками. Они обладают низкими диэлектрическими потерями, высоким удельным сопротивлением, высокой электрической прочностью, высокой технологичностью и, как правило, невысокой ценой. Кроме того, на основе полимеров с дисперсными добавками различной электропроводности, теплопроводности, магнитной проницаемости, диэлектрической проницаемости, твердости и т.п. можно получать разнообразные композиционные материалы с широким спектром свойств. По технологическим признакам полимерные материалы делятся на 2 класса - термопласты и реактопласты.                            Термопласты - размягчаются при нагревании, что позволяет использовать простую технологию термопрессования. При этом гранулы исходного полимера помещают в камеру термопласт - автомата, нагревают до температуры размягчения, прессуют и охлаждают. Так делают мелкие диэлектрические детали. Для крупногабаритных изделий, типа кабелей, полутвердый расплав выдавливают через фильеру вместе с внутренним электродом кабеля.

Наиболее распространенным диэлектриком этого класса является полиэтилен H-(CH2)nH. Полиэтилен производят путем полимеризации газа этилена при повышенных давлениях и температурах. В основном используются две технологии. Исторически первой была технология получения полиэтилена при высоком давлении до 250 МПа и температуре до 300 °С с помощью инициирующих агентов-окислителей. При этом получается т.н. полиэтилен высокого давления ПЭВД, для которого используется и другое название - полиэтилен низкой плотности (ПЭНП). В настоящее время более распространена технология получения полиэтилена с помощью катализаторов при невысоком давлении до 1 МПа, невысокой температуре до 80 °С. При этом получается т.н. полиэтилен низкого давления ПЭНД, для которого используется и другое название - полиэтилен высокого плотности (ПЭВП). Главное отличие полученных продуктов с физико-химической точки зрения - повышенная водостойкость ПЭНД по сравнению с ПЭВД. Другие характеристики практически одинаковы: удельное сопротивление 1014-1015 Ом×м, удельное поверхностное сопротивление 1015 Ом, диэлектрическая проницаемость 2.2-2.4, тангенс угла диэлектрических потерь 10-4, электрическая прочность 45-55 кВ/мм, теплопроводность 0.3-0.4 Вт/(м×К), теплоемкость 2 кДж/(кг×К), плотность 920-960 кг/м3. Класс нагревостойкости Y. Полиэтилен широко используют в качестве силовой электрической изоляции в кабелях, в особенности т.н. "сшитый" полиэтилен. (В зарубежной литературе - cross-linked polyethylene). Его получают либо облучением высокоэнергетичными частицами (электронами, фотонами, тяжелыми частицами), либо вулканизацией. При этом образуется пространственная сетка, подобно тому, как это реализуется в резине. Модифицированный материал может эксплуатироваться при температуре до 200 °С, кроме того, он становится более стойким по отношению к агрессивным средам и растворителям, механически более прочным, его удельное сопротивление повышается примерно на два порядка.

Из других термопластичных полимеров, используемых в энергетике в виде электроизоляционных пленок отметим полипропилен, поливинилхлорид, лавсан.                                                                        Рядом уникальных свойств обладает фторопласт (политетрафторэтилен). Он химически инертен, не растворяется в растворителях, вплоть до температуры 260 °С, абсолютно не смачивается водой, не гигроскопичен. Недостатки - не стоек под действием радиации, обладает хладотекучестью.         Реактопласты - при нагревании не размягчаются, после достижения некоторой температуры начинаются разрушаться. Изделия из них обычно делают различными способами. Одна из распространенных дешевых технологий заключается в следующем. Сначала готовят пресс-порошки полимера. Затем пресс порошок засыпают в пресс-форму и прессуют при определенном давлении и температуре. При этом возникает сцепление между деформированными частицами, и после охлаждения материал готов к использованию. Возможно проведение полимеризации из исходных компонентов в заранее подготовленных формах. Так делают изделия из эпоксидных полимеров, кремнийорганической резины.                                                                                                              Достаточно дешевы и технологичны реактопласты на основе фенолформальдегидных полимеров (бакелит) и аминоформальдегидных полимеров. Их электрофизические характеристики невысоки. Эпоксидные полимеры обладают хорошей механической прочностью, удовлетворительными электрофизическими характеристиками. Они являются полярными диэлектриками, некоторые марки эпоксидных материалов имеют диэлектрическую проницаемость до 16. Высокая полярность приводит к слабой водостойкости. Главное преимущество эпоксидных компаундов - простота технологии приготовления. Компаунды холодного отвержения получают смешиванием эпоксидной смолы, отвердителя и пластификатора. В период времени до начала твердения (от минут до часов) жидкую композицию можно заливать в требуемую форму. Часто компаунд используют для ремонта диэлектрических деталей в качестве клея.                                                                                                           Из других полимеров-реактопластов отметим диэлектрический материал с высокой механической прочностью - капролон, с большим диапазоном рабочих температур (-100°С до +250°С) - полиимиды и композиты на их основе.                                                                                                                         Бумага и картон. Важным преимуществом этих материалов является то, что они производятся из возобновляемого сырья, а именно из древесной массы. Технология приготовления состоит из варки щепы и опилок в щелочном растворе с добавками. Целлюлозные волокна разделяются, полученная пульпа загущается удалением некоторого количества воды, из нее удаляются металлические примеси. Затем следует прокатка между вальцами, при повышенных давлении и температуре. Чем выше плотность бумаги, тем выше как механическая, так и электрическая прочность бумаги. Самые тонкие и прочные бумаги используются для изготовления конденсаторов. Достаточно отметить, что плотность конденсаторных бумаг достигает 1.6 т/м3, т.е. более, чем в 1.5 раза превышает плотность воды. При этом электрическая прочность бумаги толщиной 10 мкм, пропитанной трансформаторным маслом, составляет до 10 МВ/см.Электротехнический картон используется в качестве диэлектрических дистанцирующих прокладок, шайб, распорок, в качестве изоляции магнитопроводов, пазовой изоляции вращающихся машин и т.п. Картон, как правило, используется после пропитки трансформаторным маслом. Электрическая прочность пропитанного картона достигает 40-50 кВ/мм. Поскольку она выше прочности трансформаторного масла, для увеличения электрической прочности трансформаторов зачастую устраивают в среде масла специальные барьеры из картона. Маслобарьерная изоляция обычно имеет прочность Е=300-400 кВ/см. Недостатком картона является гигроскопичность, в результате попадания влаги уменьшается механическая прочность и, резко уменьшается электрическая прочность (в 4 и более раз).         Слюдяные материалы. Слюда является основой большой группы электроизоляционных изделий. Главное достоинство слюды - высокая термостойкость наряду с достаточно высокими электроизоляционными характеристиками. Слюда является природным минералом сложного состава. В электротехнике используют два вида слюд: мусковит КАl2(АlSi3О10)(ОН)2 и флогопит КMg3(АlSi3О10(ОН)2. Высокие электроизоляционные характеристики слюды обязаны ее необычному строению, а именно - слоистости. Слюдяные пластинки можно расщеплять на плоские пластинки вплоть до субмикронных размеров. Разрушающие напряжения при отрыве одного слоя от другого слоя составляют примерно 0.1 МПа, тогда как при растяжении вдоль слоя - 200-300 МПа. Из других свойств слюды отметим невысокий tgd, менее чем 10-2; высокое удельное сопротивление, более 1012 Ом×м; достаточно высокую электрическую прочность, более 100 кВ/мм; термостойкость, температура плавления более 1200°С.Слюда используется в качестве электрической изоляции, как в виде щипаных тонких пластинок, в.т.ч. склееных между собой (миканиты), так и в виде слюдяных бумаг, в.т.ч. пропитанных различными связующими (слюдиниты или слюдопласты). Слюдяная бумага производится по технологии, близкой к технологии обычной бумаги. Слюду размельчают, готовят пульпу, на бумагоделательных машинах раскатывают листы бумаги.Миканиты обладают лучшими механическими характеристиками и влагостойкостью, но они более дороги и менее технологичны. Применение - пазовая и витковая изоляция электрических машин.            Слюдиниты - листовые материалы, изготовленные из слюдяной бумаги на основе мусковита. Иногда их комбинируют с подложкой из стеклоткани (стеклослюдинит), или полимерной пленки (пленкослюдинит). Бумаги, пропитанные лаком, или другим связующим, обладают лучшими механическими и электрофизическими характеристиками, чем непропитанные бумаги, но их термостойкость обычно ниже, т.к. она определяется свойствами пропитывающего связующего.Слюдопласты - листовые материалы, изготовленные из слюдяной бумаги на основе флогопита и пропитанные связующими. Как и слюдиниты, они также комбинируются с другими материалами. По сравнению со слюдинитами они обладают несколько худшими электрофизическими характеристиками, но обладают меньшей стоимостью. Применение слюдинитов и слюдопластов - изоляция электрических машин, нагревостойкая изоляция электрических приборов


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: