double arrow

Дегидрогеназы, оксидазы, оксигеназы. Биологическая роль в клетке. Система микросомного окисления.


Дегидрогеназы представляют собой энзимы класса оксидоредуктаз, которые катализируют реакции отщепления водорода (то есть протонов и электронов) от субстрата, который является окислителем, и транспортируют его на другой субстрат, который восстанавливается.

В зависимости от химической природы акцептора, с которым взаимодействуют дегидрогеназы, их делят на несколько групп:

1. Анаэробные дегидрогеназы, которые катализируют реакции, в которых акцептором водорода является соединение, которое отличается от кислорода.

2. Аэробные дегидрогеназы, которые катализируют реакции где акцептором водорода может быть кислород (оксидазы) или другой акцептор. Аэробные дегидрогеназы относятся к флавопротеинам, продукт реакции - перекись водорода.

3. Дегидрогеназы, которые обеспечивают транспортировку электронов от субстрата к акцептору электронов. К этой группе дегидрогеназ принадлежат цитохромы дыхательной цепи митохондрий.

4.Дегидрогеназы, которые катализируют прямое введение в молекулу субстрата окислителя, 1 или 2 атомов кислорода. Такие дегидрогеназы получили название оксигеназы.




Оксидазы. Катализируют удаление водорода из субстрата, используя при этом в качестве акцептора водорода только кислород. Оксидазы содержат медь, продуктом реакции является вода (исключение составляют реакции, катализируемые уриказой и моноаминоксидазой, в результате которых образуется Н2О2).

В качестве субстратов оксидаз могут выступать фенолы, полифенолы, амины. Примерами ферментов класса оксидаз являются фенолаза, цитохром-оксидаза, моноаминоксидаза, уриказа.

Оксигеназы — ферменты, катализирующие реакции присоединения одного (монооксигеназы) либо двух (диоксигеназы) атомов кислорода к молекуле субстрата, источником кислорода в этом случае является молекулярный кислород; являются подклассом класса оксидоредуктаз.

Наряду с тканевым дыханием, в которое вовлекается от 80% до 90% потребляемого человеком кислорода, в организме постоянно протекают и другие реакции с участием кислорода, в том числе микросомальное и свободнорадикальное окисление.

Микросомальное окислениене связано с синтезом АТФ. Механизм данного типа окисления субстрата кислородом предусматривает такое взаимодействие субстрата (S) с молекулярным кислородом, при котором один атом кислорода включается в окисляемый субстрат, другой – в молекулу воды. За счёт включения кислорода в молекуле окисляемого субстрата возникает гидроксильная группа (-ОН), поэтому данный вид окисления называется гидроксилированием.

SН + О2 + А∙Н2 → S-ОН + Н2О + А

где SН – окисляемый субстрат; А∙Н2 – донор водорода (аскорбиновая кислота или НАДФ∙Н2).



Ферменты, участвующие в оксигеназном окислении, называются гидроксилазами, либо оксигеназами. Эти ферменты содержат в активном центре ионы металлов с переменной валентностью (Fe, Cu). Гидроксилазы могут существовать в растворимом виде в клеточном соке, или в виде специальных групп окислительных ферментов, расположенных в мембранах цитоплазматической сети печёночных клеток, митохондрий клеток коры надпочечников и т.д. При растирании ткани фрагменты цитоплазматической сети самопроизвольно замыкаются в пузырьковидные структуры, называемые микросомами, поэтому данный тип окисления называют микросомальным. Группа окислительных ферментов микросом представляет собой циклическую цепь транспорта электронов и протонов, источником которых служит преимущественно НАДФ∙Н2. Главным компонентом этой системы является цитохром Р450 с катионом железа (Fe3+ ↔ Fe2+) в активном центре, где начинается окисление субстратов. Название цитохрома связано с тем, что его восстановленная форма связывает оксид углерода СО и приобретает характерное поглощение света при 450 нм.

---

Транспорт глюкозы в клетки различных органов и тканей. Пути метаболизма глюкозы, их значение и взаимосвязь.

Транспорт моносахаров через мембраны

Всасывание в кишечнике

После переваривания крахмала и гликогена, после расщепления дисахаридов в полости кишечника накапливается глюкоза и другие моносахариды, которые должны попасть в кровь. Для этого им необходимо преодолеть, как минимум, апикальную мембрану энтероцита и его базальную мембрану.







Сейчас читают про: