Теплоёмкость металлов

Металл состоит из положительно заряжённых ионов, совершающих тепловые колебания вокруг узлов кристаллической решётки. Между ними движутся так называемые свободные электроны, слабо связанные с ионами решётки. Они ведут себя подобно электронному газу. Наличием свободных электронов объясняется высокая электропроводность металлов. Классическая теория теплоёмкости не учитывает наличие электронного газа. Она учитывает тепловые колебания одних только ионов. Расчёт показывает, что отношение электронной теплоёмкости к ионной при нормальных условиях равно

,                                                         (16)

где ε F – энергия Ферми при Т = 0 °К. При рассматриваемых условиях kT << ε F, что означает, что теплоёмкость металлов за счёт свободных электронов пренебрежимо мала. При обычных температурах в тепловом движении принимает участие лишь небольшая часть свободных электронов, которые обладают энергией больше, чем ε F, а при достаточно низких температурах теплоёмкость электронного газа превосходит ионную, поскольку последняя уменьшается ~ Т З.

Изложенные теории теплоёмкости твердых тел показывают, что дискретность энергетических уровней не совместима с классическим законом о равнораспределении энергии по степеням свободы. Только тогда, когда средняя энергия теплового движения kT велика по сравнению с разностями между высшими энергетическими уровнями и наинизшим из них, возбуждается много энергетических уровней. При таком условии дискретность уровней становится малосущественной, и атомная система ведет себя как классическая, в которой энергия меняется непрерывно. Отсюда следует, что чем выше температура, тем лучше оправдывается классический закон о равномерном распределении энергии по степеням свободы.

Для экспериментального определения теплоёмкости исследуемое тело помещается в калориметр, который нагревается электрическим током. Если температура калориметра с исследуемым образцом очень медленно увеличивать от начальной T 0 на ∆T, то энергия электрического тока пойдет на нагревание образца калориметра

,                                                (17)

где I и U – ток и напряжение нагревателя, τ – время нагревания, m 0 и m – массы калориметра и исследуемого образца, c 0, c – удельные теплоёмкости калориметра и исследуемого образца, ∆ Q – потери тепла в теплоизоляцию калориметра и в окружающее пространство.

Для исключения из уравнения (17) количества теплоты, расходованной на нагрев калориметра и потери теплоты в окружающее пространство, необходимо при той же мощности нагревателя нагреть пустой калориметр (без образца) от начальной температуры T 0 на туже разность температур ∆T. Потери тепла в обоих случаях будут практически одинаковыми и очень малыми, если температура защитного кожуха калориметра в обоих случаях постоянная и равна комнатной

.                                                         (18)

Из уравнений (18) и (17) вытекает

.                                                            (19)

Уравнение (19) может быть использовано для экспериментального определения удельной теплоёмкости материала исследуемого образца. Изменяя температуру калориметра, необходимо построить график зависимости разности времени нагрева от изменения температуры исследуемого образца: , по угловому коэффициенту которого  можно определить удельную теплоёмкость образца. Следует отметить, что в опытах по измерению теплоёмкости твёрдого тела обычно измеряют CP. Значительно труднее обеспечить такие условия опыта, когда объём твёрдого тела оставался бы неизменным при изменении температуры. В случае твёрдого тёла изменение объёма при изменении температуры невелико и разность CPCV мала, поэтому её обычно не учитывают.

 

Лабораторная работа.

Цель работы.

1. Измерение зависимости повышения температуры исследуемого образца в муфельной печи от времени.

2. Вычисление по результатам измерений теплоемкости исследуемого образца.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: