Складність деяких методів експоненціювання точки кривої
Найпоширенішою операцією у всіх криптографічних алгоритмах є
- кратне додавання точки
, позначуване як 
Цю операцію звичайно називають скалярним множенням, або, звертаючись до термінології мультиплікативної групи, експоненціюванням точки кривої.
З метою підвищення продуктивності під час обчислення точки
багатьма авторами запропоновано різні методи. Дамо стислий опис й оцінку складності найпоширеніших з них.
Підхід до розрахунку точки
може відрізнятися залежно від того, чи є точка
фіксованою (заздалегідь відомою) або довільною точкою. У першому випадку завжди можна користуватися передрозрахунками точок, наприклад,
, які зберігаються в пам'яті. Двійкове подання числа
дозволяє селектрувати ті з них, які в результаті підсумовування утворять точку
. У другому, більш загальному випадку, всі обчислення доводиться проводити в реальному часі.
Нехай порядок
і число
подано у двійковій системі

Розглянемо спочатку основні алгоритми експоненціювання при невідомій заздалегідь точці 
експоненціювання алгоритм скалярне множення
Алгоритм подвоєння-додавання
Це найприродніший і найпростіший метод, при якому обчислення здійснюються за формулою

Ці обчислення на основі методу розрахунку ліворуч-праворуч здійснюються за допомогою наступного алгоритму.
Алгоритм 1.
Вхід: 
Вихід: 
1. 
2. 
2.1 
2.2 
3.
.
Реалізація методу вимагає
операцій
подвоєння точки й
додавань
, де
- вага Хеммінга двійкового вектора
(число одиниць цього вектора). Оскільки в середньому число одиниць випадкового вектора дорівнює
, загальне число групових операцій оцінюється величиною 
Алгоритм подвоєння-додавання-віднімання
Попередній алгоритм можна вдосконалити, якщо вести додаткову операцію-віднімання точки. Цей метод запропонований в 1990 році Ф. Морейном і Дж. Олівосом. Наприклад, число
у двійковій системі має вага у
, але його можна подати як
з вагою
Ця ідея знижує вагу Хеммінга і, відповідно, число групових операцій. Реалізувати алгоритм подвоєння - додавання віднімання можна переходом від двійкового подання числа
до трійкового
з коефіцієнтами
Одне із властивостей подання
- відсутність у ньому суміжних пар ненульових елементів, завдяки чому зростає питома вага нульових елементів
. Для розрахунку
використовується наступний алгоритм.
Алгоритм 2.
Вхід: позитивне ціле число 
Вихід: 
1. 
2. 
2.1 
2.2 
2.3 
3. 
Після розрахунку
обчислюється точка
методом ліворуч-праворуч за допомогою алгоритму 3.
Алгоритм 3.
Вхід: 
Вихід: 
1. 
2. 
2.1 
2.2 
2.3 
3.
.
-подання числа
може виявитися на один біт більше двійкового. Водночас, для випадкового
ймовірність ненульових елементів
і
знижується від
до
, тобто, у середньому, для
- розрядного числа їхня кількість оцінюється величиною
. Тоді загальне середнє число групових операцій додавання
й подвоєння
в алгоритмі 3 можна оцінити як суму 






