Вопрос 2. Виды радиоактивного распада

Радиоактивность – это свойство атомных ядер определенных химических элементов самопроизвольно превращаться в ядра других элементов с испусканием особого рода излучения, называемого радиоактивным излучением. Само явление носит название радиоактивный распад.

Радиоактивные превращения, происходящие в природе, называются естественной радиоактивностью. Аналогичные процессы, происходящие в искусственно полученных веществах (через соответствующие ядерные реакции), - искусственной радиоактивностью. Оба вида радиоактивности подчиняются одним и тем же законам.

Существуют следующие типы ядерных превращений, или видов радиоактивного распада: альфа-распад, бета-распад (электронный, позитронный), электронный захват (К-захват), внутренняя конверсия, деление ядер.

Альфа-распад – это самопроизвольное деление неустойчивого атомного ядра на α-частицу (ядро атома гелия 42Не) и ядро-продукт (дочернее ядро).При этом заряд ядра продукта уменьшается на 2 положительные единицы, а массовое число на 4 единицы. При этом образующийся элемент-продукт смещается влево относительно исходного на две клетки периодической системы Д.И. Менделеева.

Альфа-радиоактивными являются практически все (за редким исключением) ядра атомов элементов с порядковым номером 82 и больше (те, что в периодической таблице стоят за свинцом 82Pb). Альфа-частица, вылетая из ядра, приобретает кинетическую энергию порядка 4-9 МэВ.

Бета-распад – это самопроизвольное превращение нестабильных атомных ядер с испусканием β-частицы, при котором их заряд изменяется на единицу. В основе этого процесса лежит способность протонов и нейтронов к взаимным превращениям.

Если в ядре имеется излишек нейтронов («нейтронная перегрузка» ядра), то происходит электронный β- -распад, при котором один из нейтронов превращается в протон, а ядро испускает электрон и антинейтрино (массовое и зарядовое число которой равно 0).

При этом распаде заряд ядра и соответственно атомный номер элемента увеличиваются на единицу (элемент сдвигается в периодической системе Д.И. Менделеева на один номер вправо от исходного), а массовое число остается без изменений. Электронный бета-распад характерен для многих естественных и искусственно полученных радиоактивных элементов.

Если неблагоприятное соотношение нейтронов и протонов в ядре обусловлено излишком протонов, то происходит позитронный (β+) распад, при котором ядро испускает позитрон (частицу такой же массы, как и электрон, но имеющую заряд +1) и нейтрино, а один из протонов превращается в нейтрон.

Заряд ядра и соответственно атомный номер элемента уменьшаются на единицу, и дочерний элемент будет занимать место в периодической системе Д.М. Менделеева на один номер левее от исходного, массовое число остается без изменения. Позитронный распад наблюдается у некоторых искусственно полученных изотопов.

Электронный захват – самопроизвольное превращение атомного ядра, при котором его заряд уменьшается на единицу за счет захвата одного из орбитальных электронов и превращения протона в нейтрон.

Это происходит, если в ядре имеется излишек протонов, но недостаточно энергии для позитронного распада. Один из протонов ядра захватывает электрон с одной из оболочек атома, чаще всего с ближайшего к нему К-слоя (К-захват) или реже L-слоя (L-захват) и превращается в нейтрон с испусканием нейтрино. При этом дочерний элемент, как и при позитронном распаде, смещается в периодической системе Д.И. Менделеева на одну клетку влево от исходного.

На освободившееся место в К-слое перескакивает электрон с L-слоя, на место последнего со следующего слоя и т.д. Каждый переход электрона со слоя на слой сопровождается выделением энергии в виде квантов электромагнитного излучения (рентгеновского диапазона).

Позитронный распад и электронных захват, как правило, наблюдают только у искусственно-радиоактивных изотопов (4).

Деление ядер – это спонтанное деление ядра, при котором оно, без какого либо внешнего воздействия, распадается на две, как правило, неравные части. Так ядро урана может делиться на ядра бария (56Ва) и криптона (36Kr). Этот тип распада характерен для изотопов элементов стоящих в периодической системе за ураном. Под действием сил электростатического отталкивания одноименных зарядов ядра-осколки приобретают кинетическую энергию порядка 165 МэВ и разлетаются в разные стороны с огромными скоростями.

Внутренняя конверсия. Возбужденное ядро передает энергию возбуждения одному из электронов внутренних слоев (К-, L-, или М-слой), который в результате этого вырывается за пределы атома. Затем один из электронов с более отдаленных слоев (с более высоких энергетических уровней) осуществляет квантовый переход на «вакантное» место с испусканием характеристического рентгеновского излучения [Белов А.Д., 1999; Симак С.В. и др., 1998].

Вопрос 3. Закон радиоактивного распада.

Радиоактивность - это свойство ядер определенным элементов самопроизвольно (т.е. без каких-либо внешних воздействий) превращаться в ядра других элементов с испусканием особого рода излучения, называемого радиоактивным излучением. Само явление называется радиоактивным распадом.

Количество любого радиоактивного изотопа со временем уменьшается вследствие радиоактивного распада (превращения ядер). Радиоактивный распад идет непрерывно, скорость этого процесса и его характер определяются строением ядра. Поэтому на этот процесс нельзя повлиять никакими обычными физическими или химическими способами, не изменив состояния атомного ядра. Кроме того, распад носит вероятностных характер, то есть нельзя точно определить, когда и какой именно атом распадется, но в каждый промежуток времени распадается в среднем какая то определенная часть атомов.

Для каждого радиоактивного изотопа средняя скорость распада его атомов постоянна, неизменна и характерна только для данного изотопа. Постоянная радиоактивного распада λ для определенного изотопа показывает, какая доля ядер распадется в единицу времени. Постоянную распада выражают в обратных единицах времени с-1, мин-1, ч-1 и т.д., чтобы показать, что количество радиоактивных ядер со временем убывает, а не растет.

Самопроизвольное превращение ядер любого радиоактивного изотопа подчиняется закону радиоактивного распада, который устанавливает, что за единицу времени распадается одна и та же доля имеющихся в наличии ядер.

Математическое выражение этого закона, описывающее процесс убывания количества радиоактивных ядер со временем, отображается следующей формулой:

 

Nt = N0e-λt, (Nt = N0e-0,693t/Т)

 

где, Nt – число радиоактивных ядер, оставшихся по прошествии времени;

    N0 – исходное число радиоактивных ядер в момент времени t=0;

е – основание натуральных логарифмов (е=2,72);

λ – постоянная радиоактивного распада (=0,693/Т);

t – время, в течение которого распадался радиоизотоп;

Т – период полураспада данного радиоизотопа.

По этой формуле можно рассчитать число не распавшихся радиоактивных атомов в данный момент времени.

Для характеристики скорости распада радиоактивных элементов на практике пользуются периодом полураспада.

Период полураспада – это время, в течение которого распадается половина исходного количества радиоактивных ядер. Он обозначается буквой Т и выражается в единицах времени.

Для различных радиоактивных изотопов период полураспада имеет значения от долей секунды до миллионов лет. Причем у одного и того же элемента могут быть изотопы с различным периодом полураспада. Соответственно и радиоактивные элементы разделяются на короткоживущие (часы, дни) – 13153I (8,05 суток), 21484Po (1,64*10-4сек.) и долгоживущие (годы) – 23892U (T=4.47 млрд. лет), 13755Cs (30 лет), 9038Sr (29 лет).

Между периодом полураспада и постоянной распада существует обратная зависимость, т.е. чем больше λ, тем меньше Т, и наоборот.

Активность радиоактивного элемента равна числу распадов в единицу времени. Чем больше радиоактивных превращений испытывают атомы данного вещества, тем выше его активность. Как следует из закона радиоактивного распада, активность радионуклида пропорциональна числу радиоактивных атомов, т.е. возрастает с увеличением количества данного вещества. Поскольку скорость распада радиоактивных изотопов различна, то одинаковые по массе количества различных радионуклидов имеют разную активность.

В системе СИ единицей активности является беккерель (Бк) – распад в секунду (расп/с). Наряду с Бк используется внесистемная единица – кюри (Ки). 1Ки – это активность любого радиоактивного вещества (изотопа) в котором происходит 3,7*1010 актов распада в секунду. Единица кюри соответствует радиоактивности 1 г радия.

1Ки = 3,7*1010 Бк; 1мКи = 37МБк 1мкКи = 37 кБк

Активность любого радиоактивного препарата по истечении времени t определяют по формуле, соответствующей основному закону радиоактивного распада:

 

At = A0е-0,693t,

 

где At – активность препарата через время t;

    А0 – исходная активность препарата;

е – основание натуральных логарифмов (е=2,72);

t – время, в течение которого распадался радиоизотоп;

    Т – период полураспада; значения Т и t должны иметь одинаковую размерность (мин., сек., часы, дни и т.д.).

(Пример: Активность А0 радиоактивного элемента 32Р на определенный день равна 5 мКи. Определить активность этого элемента через неделю. Период полураспада Т элемента 32Р составляет 14,3 дня. Активность 32Р через 7 суток. At = 5 * 2,720,693*7/14,3 = 5 * 2,720,34 = 3,55 мКи).

Единицы кюри (Ки) для характеристики гамма-активности источников непригодны. Для этих целей введена другая единица – эквивалент 1 мг радия (мг-экв.радия). Миллиграмм-эквивалент радия – это активность любого радиоактивного препарата, гамма-излучение которого при идентичных условиях измерения создает такую же мощность экспозиционной дозы, как гамма-излучение 1 мг радия Государственного эталона радия РФ при использовании платинового фильтра толщиной 0,5 мм. Единица миллиграмм-эквивалент радия не установлена существующими стандартами, но широко используется на практике.

Точечный источник в 1мг (1мКи) радия, находящийся в равновесии с продуктами распада, после начальной фильтрации через платиновую пластину толщиной 0,5 мм создает в воздухе на расстоянии 1см мощность дозы 8,4 Р/ч. Эту величину называют ионизационной гамма-постоянной радия и обозначают буквой Кγ. Гамма-постоянная радия принята за эталон мощности дозы излучения. С ней сравнивают Кγ всех других гамма-излучателей. Существуют таблицы гамма-постоянных для большинства радиоактивных изотопов.

Так, гамма-постоянная 60Со составляет 13,5 Р/ч. Сравнение гамма-постоянных радия и 60Со показывает, что 1 мКи радионуклида 60Со создает дозу излучения, в 1,6 раза большую, чем 1 мКи радия (13,5/8,4=1,6). Иначе говоря, по создаваемой дозе излучения в воздухе 1 мКи радионуклида 60Со эквивалентен 1,6 мКи радия, т.е. гамма-излучение, испускаемое препаратом 60Со активностью 0,625 мКи, создает такую же дозу излучения, что и 1 мКи радия.

Гамма-эквивалент М изотопа связан с его активностью А (мКи) через ионизационную гамма-постоянную Кγ соотношениями:

М = АКγ/8,4 или А = 8,4М/Кγ,

которые позволяют перейти от активности радиоактивного вещества, выраженной в мг-экв.радия, к активности, выраженной в мКи и наоборот [Белов А.Д. 1999].

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: