Введение
Бытовые радиовещательные приёмники (в дальнейшем ПРМ) предназначены для приёма программ звукового радиовещания в диапазонах длинных (148 … 285 кГц), средних (525 … 1607 кГц), коротких (3,95 … 12,1 МГц) волн с амплитудной модуляцией (АМ) и в диапазоне ультракоротких волн (65,8 … 74; 100 … 108 МГц) с частотной модуляцией (ЧМ), в том числе приёма стереофонических передач.
Технический (инженерный) расчёт ПРМ выполняется для того, чтобы на основе требуемых (заданных) характеристик на ПРМ получить:
1) обоснованный и наиболее оптимальный вариант структурной схемы с выбором электронных приборов, схем и основных характеристик каждого каскада;
2) характеристики и параметры всех элементов каждого каскада ПРМ, включая выбор оптимального режима работы электронного прибора;
3) принципиальную схему приёмника и спецификацию к ней.
Основными узлами и блоками ПРМ являются: приёмная антенна, ряд различных усилителей (УВЧ) и преобразователей высокой частоты, детектор, усилитель звуковой частоты (УЗЧ) и оконечное устройство, а так же используются системы автоматической подстройки частоты (АПЧ) и усиления (АРУ).
Классификация ПРМ проводится по ряду признаков: тип структурной схемы, вид используемых активных элементов, тип конструкции и т.д.
Структурная схема ПРМ в значительной степени определяется его назначением и видом модуляции сигнала. По виду структурных схем все существующие ПРМ можно поделить на: детекторные ПРМ без УЗЧ и с УЗЧ, приёмники прямого усиления, регенеративные и сверхрегенеративные ПРМ, синхронные, ПРМ с прямым преобразованием частоты и супергетеродинные ПРМ с одним и более преобразованиями частоты.
приемник радиовещательный переносной усиление
Современные ПРМ в большинстве случаев строят по супергетеродинной схеме, т.к. данная схема обладает существенными преимуществами (высокая чувствительность и селективность) перед ПРМ других типов. Поэтому проектируемый ПРМ будет строиться именно по этой схеме.
Структурная схема приёмника
Как отмечалось ранее, структурная схема проектируемого ПРМ будет гетеродинной. В добавлении к этому следует учесть, что данный ПРМ принимает и обрабатывает сигналы с АМ, поэтому в его структуру следует включить систему АРУ. А так же для улучшения чувствительности, путём уменьшения полосы пропускания ПРМ, введём систему АПЧ.
Таким образом, структурная схема всего ПРМ будет иметь вид, приведённый на рис.1.

Рис.1. Структурная схема супергетеродинного приёмника.
| ВЦ - входная цепь; | Г - перестраиваемый гетеродин; |
| УРЧ, УПЧ, УЗЧ - усилители резонансной, промежуточной и звуковой частоты соответственно; | ФАПЧ, ФАРУ - фильтры соответствующих систем автоматики; |
| ОУ - оконечное устройство (динамическая головка); | УЭ - управляемый элемент (варикап); |
| АД, ЧД - амплитудный и частотный детекторы; | СМ - преобразователь частоты (смеситель); |
| ДАРУ - амплитудный детектор системы АРУ; | А - антенна. |
Проектирование структурной схемы линейного тракта приёмника
Строгое выполнение блок-схемы ПРМ без детального расчёта отдельных каскадов затруднительно, особенно для высокочастотных диапазонов волн. Поэтому в некоторых случаях уже при расчёте структурной схемы может потребоваться конкретизация активных элементов ПРМ, схем их включения и др.
Расчёт необходимой полосы пропускания
Полоса пропускания линейного тракта ПРМ, форма основных характеристик (АЧХ, ФЧХ) в пределах полосы частот принимаемого сигнала должны удовлетворять требованиям допустимых искажений. Необходимая полоса пропускания (ПП) определяется реальной шириной спектра принимаемого сигнала
; доплеровским смещением частоты сигнала, которое в данном случае можно положить равном нулю, т.к. имеем дело с малыми скоростями
и запасом
, зависящим от нестабильности частот принимаемого сигнала и гетеродинов приёмника, а так же погрешностей в настройки отдельных контуров и всего приёмника. Таким образом
(1)
Ширина спектра принимаемого сигнала при АМ определяется как удвоенная верхняя частота модуляции, т.е.
(2)
Запас по полосе в данном случае можно определить по следующей формуле: 
, (3)
где
- относительная погрешность и нестабильность частоты настройки контуров тракта промежуточной частоты (
кГц),
- температурная нестабильность высокой частоты, которая определяется как
, (4)
где ТКЧ - температурный коэффициент нестабильности частоты настройки контуров гетеродина (для кварцевого гетеродина ТКЧ=10-6 1/град),
- статистический разброс температур окружающей среды между приёмником и передатчиком,
- частота принимаемого сигнала.
, (5)
где
- диапазон рабочих температур проектируемого приёмника.
Таким образом, получим
Гц
Гц,
кГц,
кГц.
Так как из-за увеличения полосы ухудшается избирательность по соседнему каналу и отношение сигнал/шум, то следует выбирать полосу фильтра не более рассчитанной, но и не на много уже. Исходя из этого, ограничимся полосой в 12,5 кГц, и выберем пьезокерамический фильтр УПЧ типа ПФ1П-2 465кГц
12,5кГц, который обеспечивает селекцию по соседнему каналу при расстройке ±9 кГц более 40 дБ, что и требуется по техническому заданию.






