Застосування драйверів для захисту від перевантажень

 

Розглянемо методи відключення транзисторів в режимі перевантаження на прикладі драйверів виробництва фірм International Rectifier, Motorola і Hewlett-Packard, оскільки ці мікросхеми дозволяють реалізувати функції захисту якнайповніші.

 

Рисунок 4. – Структура драйвера IR2125

 

На рисунку 4 приведена структурна схема, а на рисунку 5 — типова схема підключення драйвера IR2125 з використанням функції захисту від перевантаження. Для цієї мети використовується висновок 6 — CS. Напруга спрацьовування захисту — 230 мВ. Для вимірювання струму в емітері встановлений резистор RSENSE, номінал якого і дільника R1, R4 визначають струм захисту.

 

Рисунок 5. – Схема включення IR2125

 

Як було вказано вище, якщо при появі перевантаження зменшити напругу на затворі, період розпізнавання аварійного режиму може бути збільшений. Це необхідно для виключення помилкових спрацьовувань. Дана функція реалізована в мікросхемі IR2125. Конденсатор С1, підключений до висновку ERR, визначає час аналізу стану перевантаження. При С1 = 300 пФ час аналізу складає близько 10 мкс (це час заряду конденсатора до напруги 1,8 В - порогової напруги компаратора схеми ERROR TIMING драйвера). На цей час включається схема стабілізації струму колектора, і напруга на затворі знижується. Якщо стан перевантаження не припиняється, то через 10 мкс транзистор відключається повністю.

Відключення захисту відбувається при знятті вхідного сигналу, що дозволяє користувачу організувати схему тригера захисту. При її використовуванні особлива увага слідує приділити вибору часу повторного включення, яке повинне бути більше теплової постійної часу кристала силового транзистора. Теплова постійна часу може бути визначена по графіку теплового імпедансу Zthjc для одиночних імпульсів.

Описаний спосіб включення транзистора має свої недоліки. Резистор RSENSE повинен бути достатньо могутнім і мати над малу індуктивність. Виті могутні резистори, що серійно випускаються, звичайно мають неприпустимо високу паразитну індуктивність. Спеціально для прецизійного вимірювання імпульсних струмів фірма CADDOCK випускає резистори в корпусах ТЕ-220 і ТЕ-247. Крім того, вимірювальний резистор створює додаткові втрати потужності, що знижує ефективність схеми. На рисунку 6 приведена схема, вільна від вказаних недоліків. У ній для аналізу ситуації перевантаження використовується залежність напруги насичення від струму колектора. Для MOSFET транзисторів ця залежність практично лінійна, оскільки опір відкритого каналу мало залежить від струму стоку. У IGBT графік Von = f(Ic) нелінійний, проте точність його цілком достатня для вибору напруги, відповідної струму вимагається захисту.

 

Рисунок 6 – До аналізу перевантаження

 


Для аналізу стану перевантаження по напрузі насичення вимірювальний резистор не потрібний. При подачі позитивного управляючого сигналу на затвор на вході захисту драйвера SC з'являється напруга, визначувана сумою падіння напруги на відкритому діоді VD2 і на відкритому силовому транзисторі Q1 і дільником R1, R4, який задає струм спрацьовування. Падіння напруги на діоді практично незмінне і складає близько 0,5 В. Напруга відкритих транзисторів при вибраному струмі короткого замикання визначається з графіка Von = f(Ic). Діод VD4, як і VD1, повинен бути швидкодійним і високовольтним.

Окрім захисту від перевантаження по струму драйвер аналізує напругу живлення вхідної частини VСС і вихідного каскаду VB, відключаючи транзистор при падінні VB нижче 9 В, що необхідне для запобігання лінійному режиму роботи транзистора. Така ситуація може виникнути як при пошкодженні низьковольтного джерела живлення, так і при неправильному виборі ємністі С2. Величина останньої повинна обчислюватися виходячи із значень заряду затвора, струму затвора і частоти проходження імпульсів. Для розрахунку значення бутстрепної ємності Cb в документації фірми International Rectifier рекомендуються наступні формули:

 

Cb = 15*2*(2*Qg + Igbs/f + It)/(Vcc – Vf – Vls),

It = (Ion + Ioff)*tw.

 

де

Ion і Ioff — струми включення і виключення затвора,

tw = Qg/Ion — час комутації,

Qg — заряд затвора,

f — частота проходження імпульсів,

Vcc — напруга живлення,

Vf — пряме падіння напруги на діоді зарядного насоса (VD1 на рисунку 10.6),

Vls — пряме падіння напруги на іншому діоді (VD3 на рисунку 10.6),

Igbs — струм затвора в статичному режимі.

При неможливості живлення драйвера від бутстрепної ємності необхідно використовувати «плаваюче» джерело живлення.

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: