Равновесие тел при наличии трения скольжения

РАВНОВЕСИЕ ПРИ НАЛИЧИИ ТРЕНИЯ

Трением скольжения называется сопротивление, возникающее при относительном скольжении двух соприкасающихся тел. Поэтому сила трения скольжения, приложенная к одному из трущихся тел, направлена противоположно его скорости относительно второго тела.

Опытным путем установлено, что величина силы трения скольжения пропорциональна нормальному давлению одного из трущихся тел на другое, т. е.

Как показывает опыт, величина этого коэффициента зависит от материала трущихся тел, от состояния их поверхностей, а также от их относительной скорости.

Если трущиеся тела находятся в покое, то в этом случае трение называется статическим Максимальная величина силы статического трения, т. е. величина этой силы, соответствующая моменту начала относительного скольжения трущихся тел, определяется по той же формуле, что и в случае трения при относительном движении, т. е.

где — статический коэффициент трения.

Этот коэффициент обычно несколько больше коэффициента трения при движении. Отсюда следует, что величина силы статического трения всегда удовлетворяет условию:

Благодаря наличию силы трения между данным телом и опорной поверхностью полная реакция R этой поверхности есть равнодействующая двух сил: нормальной реакции N и силы трения (рис. 51).

Угол между направлениями нормальной реакции и полной реакции R, соответствующий максимальному значению силы трения, называется углом трения.

Отсюда следует, что

Рис. 51.

Равновесие тел при наличии трения качения

Трение качения

Рассмотрим цилиндрический каток, покоящийся на горизонтальной плоскости (рис. 67, а). Приложим к его центру силу S и будем наблюдать за состоянием катка при постепенном увеличении этой силы. Опыт показывает, что движение катка начинается не сразу, а лишь после достижения силой S некоторого предельного значения.

Однако из уравнений равновесия катка, составленных даже при учете силы трения покоя, следует совершенно другой вывод - движение должно начинаться при сколь угодно малой силе S. Действительно, для плоской системы сил: P (вес катка), N (нормальная реакция опоры), Т - сила трения покоя и приложенной силы S в состоянии равновесия должны удовлетворяться все три уравнения равновесия: .

Рис. 66.

В нашем же случае третье уравнение имеет вид (R - радиус катка) и удовлетворяется только при ; при равновесие невозможно, и каток приходит в движение при сколь угодно малой силе .

Рис. 67.

Причина противоречия кроется в том, что были учтены не все силы, действующие на каток со стороны опорной поверхности. Контакт реальных тел всегда осуществляется по некоторой площадке, в результате чего возникает еще пара сил с моментом , противоположным направлению возможного качения тела по опорной поверхности (рис. 67, б).

При учете момента трения качения уравнение моментов относительно точки О приобретает вид , снимающий возникшее противоречие. Из этого уравнения следует, что пока качения нет, момент трения равен моменту движущейся силы . Постепенно увеличивая силу S, можно прийти к такому предельному состоянию, когда малейшее приращение силы S вызывает качение катка по опоре. В этом состоянии предельного равновесия момент трения качения принимает свое наибольшее значение

Величина , имеющая размеренность длины, называется коэффициентом трения качения и определяется из эксперимента либо по техническим справочникам.

Момент трения качения, таким образом, изменяется в пределах

принимая значение только при возникновении качения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: