1. Найти все значения m, при которых длина вектора
= (m
, 5, 4) больше 8.
2. Найти длину вектора
по заданным координатам его концов
А (2; 3; 1) и В (1; 1; 3).
3. В равнобедренном треугольнике с вершинами в точках А (4; 2; 1),
В (6; 3; 2), С (3; 4; 0) найти длину боковой стороны.
4. При каких значениях k, m векторы
= (1, m, 2) и
= (4, 1, k) коллинеарны?
5. Даны векторы
= (2; -4; 6) и
= (m; 2; n). Найти сумму m + n, если точки А, В и С лежат на одной прямой.
6. Известно, что вектор
направлен противоположно вектору
= (-18; 9; - 6) и |
| = 7. Найти сумму координат вектора
.
7. При каких значениях m векторы
= (m
, - 5, 1) и
= (1, 1, - 4) перпендикулярны?
8. Найти косинус угла между векторами
= (3, 2, 1) и
= (1, 1, 2).
9. Точки А (2; 3; -5), С (3; 6; 8) и D (5; 4; -1) являются вершинами параллелограмма ABCD. Найти длину диагонали BD.
10. Точки А (1; 3; -1), В (2; 4; 5) и С (8; 5; 6) являются вершинами ромба ABCD. Найти длину диагонали BD.
11. Найти градусную меру угла между вектором
= (-
; -
;
) и осью абсцисс.
12. Найти градусную меру угла между вектором
= (-1;
; -2
) и осью Oz.
13. Найти |
|, если |
| =
,
= 20 и
= 18.
14. Найти
, если |
| = 17,
= 28 и |
|= 21.
15. Найти градусную меру угла между векторами
и
, если 
16. Найти |
|• |
|, если вектор
+
делит угол между векторами
= (3; 5; - 7) и
пополам.
17. Найти градусную меру угла между векторами
,
, если
= |
| + |
|.
18. Даны векторы
= (5; -2; 3),
= (2; -3; 1) и
=
- 2
. Найти угол между векторами
и
.
19. Даны векторы
(3; 2; - 1) и
(2; 4; 1). Найти угол между векторами
+
и
-
.
20. В параллелограмме ABCD известны векторы
= (-4;-4;3),
= (-2;-6;1) и вершина А (3; 7; -5). Найти сумму координат точки пересечения диагоналей параллелограмма.
Ответы:
1. (- ; -1)U(1; + );
| 2. 3; | 3. ;
|
| 4. k = 8, m = 1/4 | 5. -4; | 6. 5; |
7.±3; 8. /6;
11. 120°; 12. 135°;
15. 0°; 16. 83;
| 9. ;
13. 15;
17. 0°;
| 10. 5 ;
14. 26;
18. 90°;
|
19. - arccos7/3 ;
| 20. 6. | - |
(Соболь Б.)Примеры 1-20
Пример 1. Найти все значения m, при которых длина вектора
= (
, -m, 2) равна 10.
Ответ: т = ±9.
Пример 2. Найти все значения
, при которых длина вектора
= (
, 75, 4) больше 5.
Ответ: (-
; -2) и (2; +
).
Пример 3. Найти длину вектора
по заданным координатам его концов А (4, 3, -1); В (1-, 6, 2).
Пример 4. Найти длину основания равнобедренного треугольника с вершинами в точках А (2; 3; 1), В(1; 3; 3) и С(2; 4; 3).
Ответ:
.
Пример 5. Даны векторы
= (3; 5; 1),
= (1; 4; 2) и
=
– 3
. Определить длину вектора с.
Ответ:
.
Пример 6. При каких значениях k, m векторы
= (-1, - 1, т) и
= (к, 4, 5) коллинеарны?
Ответ: k = 4, m = - 5/4
Пример 7. Даны векторы
= (-3; 5; 11) и
= (6; m; n). Найти разность m - n, если точки A, B, C лежат на одной прямой.
Ответ: 12.
Пример 8. Даны векторы
= (2; 4; -1),
= (3; 5; -3) и
= 2
-
. Найти скалярное произведение векторов
и
.
Ответ: 13.
Пример 9. При каких значениях
векторы
= (5,
, 14)
и
= (2, 1, -1) перпендикулярны?
Ответ: ±2.
Пример 10. Найти косинус угла между векторами
= (-1, 1, 1) и
= (-1, 5, 3).
Ответ:
.
Пример 11. Найти все значения m, при которых угол между векторами
= (7; -1; 2т) и
= (-2; 4m; 1) острый.
Ответ: m < -7.
Пример 12. В параллелограмме ABCD заданы вершина С(6; -8, 5) и векторы
(-3; 1; 4) и
(2; - 3; 5) его диагонали. Найти сумму координат точки B.
Ответ: 0.
Пример 13. Векторы
= (5; 2; -1) и
= (1; -5; -2), проведенные из точки С (5; 4; -3), являются боковыми сторонами равнобедренного треугольника. Найти сумму координат основания высоты треугольника, проведенной из вершины С.
Ответ: 6.
Пример 14. В треугольнике ABC заданы
= (3; - 5; 2), точки М, N - середины сторон АВ и ВС соответственно, a
= (-4; 1; 7). Найти сумму координат вектора ВС.
Ответ: 8
Пример 15. Вектор
направлен одинаково с вектором
= (-8; 16; 4) и
|
| =
. Найти произведение координат вектора
.
Ответ: -8.
Пример 16. Вектор
направлен противоположно вектору
(3; - 4; -1) и |
| = 3
. Найти сумму координат вектора
.
Ответ: 6
Пример 17. Точки А(4; -3; 7), В(5; 3; 8) и D(10; -4; 6) являются вершинами ромба ABCD. Найти длину диагонали АС.
Ответ:
.
Пример 18. Найти |
| + |
|, если |
+
| = 19, |
-
| = 17 и |
| = 10.
Ответ: 25.
Пример 19. Укажите градусную меру угла между вектором
= (-
; - 3
; - 2
) и осью ординат.
Ответ: 135°.
Пример 20. Найти |
| - |
|, если вектор
+
делит угол между векторами
= (23; -17; 88) и
пополам.
Ответ: 0.
Тема. «Элементы векторной алгебры»
1. Что такое скалярные и векторные величины, привести их примеры и дать определение вектора.
2. Дать определения коллинеарных, компланарных векторов.
3. Дать определения равных, противоположных векторов.
4. Что относится к линейным операциям над векторами? Рассмотреть сложение векторов геометрическими методами с показом на примерах.
5. Дать определение разности двух векторов и привести геометрические методы вычитания векторов.
6. Дать определение произведения вектора на скаляр (число) и как выполняется эта операция геометрическим построением, привести пример.
7. Дать определение компоненты и проекции (координаты) вектора
на координатную ось Ох. Привести формулы определения проекции вектора и её связи с компонентой.
8. Дать линейные операции над векторами (сложение, вычитание и умножение вектора на скаляр) в координатной форме.
9. Дать определение коллинеарности векторов и привести условие коллинеарности в координатной форме.
10. Дать определение модуля и привести формулы вычисления модуля и направляющих косинусов вектора в пространстве.
11. Дать определение скалярного произведения векторов и привести его выражение через проекции вектора.
12. Привести скалярное произведение векторов в координатной форме и дать условие ортогональности векторов.
13. Дать определение векторного произведения, привести свойства его, привести его координатную форму и геометрический смысл.
14. Дать определение смешанного (векторно-скалярного) произведения трех векторов, привести его координатную форму и геометрический смысл.
;
13. 15;
17. 0°;
- arccos7/3
;






