Скалярные и векторные величины

При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых значений, более точно, которые полностью определяются при помощи числа, полученного в результате их измерения однородной величиной, принятой за единицу. Такие величины называются скалярными или, короче, скалярами. Ска­лярными величинами, например, являются длина, площадь, объ­ем, время, масса, температура тела, плотность, работа, электроёмкость и др. Так как скалярная величина определяется числом (положительным или отрицательным), то ее можно откладывать на соответствующей координатной оси. Так например, часто стро­ят ось времени, температуры, длины (пройденного пути) и другие.

Помимо скалярных величин, в различных задачах встречаются величины, для определения ко­торых, кроме числового значения, необходимо знать также их направление в пространстве. Такие величины называются векторными. Физиче­скими примерами векторных величин могут служить смещение материальной точки, двигающейся в пространстве, скорость и ускорение этой точки, а также действующая на нее сила, напряженность электрического или магнитного поля. Век­торные величины используются, например, и в климатологии. Рассмотрим простой пример из климатологии. Если мы скажем, что ветер дует со скоростью 10 м/с, то тем самым введем скаляр­ную величину скорости ветра, но если мы скажем, что дует се­верный ветер со скоростью 10 м/с, то в этом случае скорость ветра будет уже векторной величиной.

Векторные величины изображаются с помощью векторов.

Для геометрического изображения векторных величин слу­жат направленные отрезки, то есть отрезки, имеющие фикси­рованное направление в пространстве. При этом длина отрез­ка равна числовому значению векторной величины, а его на­правление совпадает с направлением векторной величины. Направленный отрезок, характеризующий данную векторную величину, называют геометрическим вектором или просто вектором.

Понятие вектора играет большую роль как в математике, так и во многих областях физики и механики. Многие физические величины могут быть представлены при помощи векторов, и это представление очень часто способствует обобщению и упрощению формул и результатов. Часто векторные величины и векторы, их изображающие, отождествляются друг с другом: так, например, говорят, что сила (или скорость) есть вектор.

Элементы векторной алгебры применяются в таких дисциплинах как: 1) электрические машины; 2) автоматизированный электропривод; 3) электроосвещение и облучение; 4) неразвлетвлённые цепи переменного тока; 5) прикладная механика; 6) теоретическая механика; 7) физика; 8) гидравлика:9) детали машин; 10) сопромат; 11) управление; 12) химия; 13) кинематика; 14) статика и др.

 

2. Определение вектора. Отрезок прямой задается дву­мя равноправными точками —его концами. Но можно рассматривать направленный отрезок, определяемый упо­рядоченной парой точек. Про эти точки известно, какая из них первая (начало), а какая вторая (конец).

Под направленным отрезком  понимают упорядоченную пару точек, первая из которых — точка А — называется его началом, а вторая — В — его концом.

Тогда под вектором понимается в простейшем случае сам направленный отрезок, а в других случаях различные векторы — это разные классы эквивалентности направленных отрезков, определяемые неким конкретным отношением эквивалентности. Причем отношение эквивалентности может быть разным, определяя тип вектора («свободный», «фиксированный» и т.д.). Проще говоря, внутри класса эквивалентности все входящие в него направленные отрезки рассматриваются как совершенно равные, и каждый может равно представлять весь класс.

Большую роль играют векторы в изучении бесконечно малых трансформаций пространства.

Определение 1. Направленный отрезок (или, что то же, упорядоченную пару точек) мы будем называть вектором. Направление на отрезке принято отмечать стрелкой. Над буквенным обозначением вектора при письме ста­вится стрелка, например:  (при этом буква, соответст­вующая началу вектора, обязательно ставится впереди). В книгах часто буквы, обозначающие вектор, набираются полужирным шрифтом, например: а.

К векторам будем относить и так называемый нулевой вектор, у которого начало и конец совпадают.

Вектор, начало которого совпадает с его концом, называют нулевым. Нулевой вектор обозначается  или просто 0.

 = 0.

Расстояние между началом и концом вектора называ­ется его длиной (а также модулем и абсолютной величи­ной). Длина вектора обозначается | | или | |. Длиной вектора, или модулем вектора, называют длину соответствующего направленного отрезка: | | = .

 

Векторы называются коллинеарными, если они распо­ложены на одной прямой или на параллельных прямых, короче говоря, если существует прямая, которой они параллельны.

Векторы называются компланарными, если существует плоскость, которой они параллельны, их можно изобразить векторами, лежащими на одной плоскости. Нулевой вектор считается коллинеарным любому вектору, так как он не имеет определенного направления. Длина его, разумеется, равна нулю. Очевидно, любые два вектора компланарны; но, конечно, не каждые три вектора в пространстве компланарны. Так как векторы, параллельные друг другу, параллельны одной и той же плоскости, то коллинеарные векторы подавно компланарны. Разумеется, обратное неверно: компланарные векторы могут быть и не коллинеарными. В силу принятого выше условия нулевой вектор коллинеарен со всяким вектором и компланарен со всякой парой векторов, т.е. если среди трёх векторов хотя бы один нулевой, то они компланарны.

2) Слово «компланарные» означает в сущности: «имеющие общую плос­кость», т. е. «расположенные в одной плоскости». Но так как речь здесь идет о свободных векторах, которые можно переносить (не изменяя длины и направ­ления) произвольным образом, мы должны называть компланарными векторы, параллельные одной и той же плоскости, ибо в этом случае их можно пере­нести так, чтобы они оказались расположенными в одной плоскости.

Для сокращения речи условимся в одном термине: если несколько свободных векторов параллельны одной и той же плоскости, то мы будем говорить, что они компланарны. В частности, два вектора всегда компланарны; чтобы в этом убе­диться, достаточно отложить их от одной и той же точки. Ясно, далее, что направление плоскости, в которой параллельны два дан­ных вектора, вполне определено, если эти два вектора не парал­лельны между собою. Любую плоскость, которой параллельны данные компланарные векторы, мы будем называть просто пло­скостью данных векторов.

Определение 2. Два вектора называются равными, если они коллинеарны, одинаково направлены и имеют равные длины.

Необходимо всегда помнить, что равенство длин двух векторов ещё не означает равенства этих векторов.

По самому смыслу определения, два вектора, порознь равные третьему, равны между собой. Очевидно, все нулевые векторы равны между собой.

Из этого определения непосредственно вытекает, что, выбрав любую точку А', мы может построить (и притом только один) вектор А' В', равный некоторому заданному вектору , или, как говорят, перенести вектор  в точку А'.

Замечание. Для векторов нет понятий «больше» или «меньше», т.е. они равны или не равны.

Вектор, длина которого равна единице, называется единичным вектором и обозначается через е. Единичный вектор, направление которого совпадает с направлением вектора а, называется ортом вектора  и обозначается а .

3. О другом определении вектора. Заметим, что понятие равенства векторов существенно отличается от понятия равенства, например, чисел. Каждое число равно только самому себе, иначе говоря, два равных числа при всех обстоятельствах могут рассматриваться как одно и то же число. С векторами, как мы видим, дело обстоит по-другому: в силу определения существуют различные, но равные между собой векторы. Хотя в большинстве случаев у нас не будет необходимости различать их между собой, вполне может оказаться, что в какой-то момент нас будет интересовать именно вектор , а не другой, равный ему вектор А'В'.

Для того чтобы упростить понятие равенства векторов (и снять некоторые связанные с ним трудности), иногда идут на усложнение определения вектора. Мы не будем пользоваться этим усложненным определением, но сформулируем его. Чтобы не путать, мы будем писать «Вектор» (с большой буквы) для обозначения определяемого ниже понятия.

Определение 3. Пусть дан направленный отрезок. Множество всех направленных отрезков, равных данному в смысле определения 2, называется Вектором.

Таким образом, каждый направленный отрезок определяет Век­тор. Легко заметить, что два направленных отрезка определяют один и тот же Вектор тогда и только тогда, когда они равны. Для Векторов, как и для чисел, равенство означает совпадение: два Вектора равны в том и только в том случае, когда это один и тот же Век­тор.

При параллельном переносе пространства точка и ее образ сос­тавляют упорядоченную пару точек и определяют направленный отрезок, причем все такие направленные отрезки равны в смысле определения 2. Поэтому параллельный перенос пространства можно отождествить с Вектором, составленным из всех этих направленных отрезков.

Из начального курса физики хорошо известно, что сила может быть изображена направленным отрезком. Но она не может быть изображена Вектором, поскольку силы, изображаемые равными нап­равленными отрезками, производят, вообще говоря, различные дейст­вия. (Если сила действует на упругое тело, то изображающий ее направленный отрезок не может быть перенесён даже вдоль той прямой, на которой он лежит.)

Это только одна из причин, по которым наряду с Векторами, т. е. множествами (или, как говорят, классами) равных направлен­ных отрезков, приходится рассматривать и отдельных представителей этих классов. При этих обстоятельствах применение определения 3 усложняется большим числом оговорок. Мы будем придерживаться определения 1, причем по общему смыслу всегда будет ясно, идет ли речь о вполне определенном векторе, или на его место может быть подставлен любой, ему равный.

В связи с определением вектора стоит разъяснить значение не­которых слов, встречающихся в литературе.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: