Проводниковые материалы. По удельному электрическому сопротивлению ρ металлические проводниковые материалы можно разделить на две группы: материалы высокой проводимости

По удельному электрическому сопротивлению ρ металлические проводниковые материалы можно разделить на две группы: материалы высокой проводимости, у которых при нормальной температуре ρ < 0,05 мкОм·м; металлы и сплавы с высоким сопротивлением, имеющие при тех же условиях ρ > 0,3 мкОм·м. Особую группу составляют криопроводники и сверхпроводники, которые обладают ничтожно малым удельным электрическим сопротивлением при температурах, близких к абсолютному нулю.

К электрическим характеристикам проводниковых материалов можно отнести: удельное сопротивление или обратную величину – удельную проводимость; контактную разность потенциалов и термоэлектродвижущую силу (термоЭДС); работу выхода электронов из металла.

Удельная проводимость выражается в сименсах на метр (См/м) и может быть определена по формуле: , где q – заряд электрона (1,6 ·10-19Кл); n0 – число свободных электронов в единице объема металла; λ – средняя длина свободного пробега электрона между двумя соударениями с узлами решетки; m – масса электрона; vт средняя скорость теплового движения свободного электрона.

Концентрация свободных электронов и скорость их хаотического теплового движения для различных металлов при определнной температуре отличаются незначительно, поэтому удельная проводимость зависит в основном от средней длины свободного пробега электронов в проводнике. Тепловая скорость определяется структурой проводникового материала, так для чистых металлов с наиболее упорядоченной кристаллической решеткой удельное сопротивление минимально, а наличие примесей и дефектов в решетке приводит к увеличению ρ. Итак, удельное сопротивление проводников: ρ = ρтепл + ρост, где ρтепл – удельное сопротивление, обусловленное в основном тепловыми колебаниями решетки; ρост – удельное сопротивление, вызванное наличием дефектов в кристаллической решетке.

Характерная для металлов зависимость удельного сопротивления от температуры приведена на рис.26.

Рис.26

При температурах, превышающих температуру Дебая Θ, которая для металлов равна 400 – 8000С, удельное сопротивление возрастает линейно и обусловлено в основном усилением тепловых колебаний решетки. В области низких (криогенных) температур удельное сопротивление почти не зависит от температуры и определяется только сопротивлением ρост.

Изменение удельного сопротивления металлических проводников с температурой принято характеризовать температурным коэффициентом удельного сопротивления ТК ρ или αρ-1). Если температура изменяется в узких пределах, то пользуются средним температурным коэффициентом удельного сопротивления:

где ρ0 – удельное сопротивление при температуре Т0, принятой за начальную; ρ1 – то же при температуре Т1. Для металлов αρ составляет 4·10-3К-1, а для сплавов значительно меньше – 10-4 – 10-6 К-1.

Металлы и сплавы высокой проводимости должны иметь достаточную прочность, пластичность, коррозионную стойкость, хорошо свариваться и подвергаться пайке. Практическое применение имеют химически чистые металлы: медь, алюминий, серебро.

Медь обладает целым рядом ценных технических свойств: малым удельным сопротивлением; достаточно высокой механической прочностью; удовлетворительной стойкостью к коррозии; хорошей обрабатываемостью (легко прокатывается в листы, ленты и протягивается в проволоку); хорошей способностью к пайке и сварке. Наименьшим удельным сопротивлением обладает химически чистая медь (бескислородная М00б удельное сопротивление 0,017 мкОм·м; получают переплавом элетролитически очищенной меди в вакууме или переработкой катодной меди методами порошковой металлургии). Механические и электрические характеристики меди существенно зависят от ее состояния. Нпример, твердотянутая медь марки МТ имеет меньшую проводимость и относительное удлинение, но большую механическую прочность, чем отожженная медь марки ММ.

Для изделий с большей прочностью используют латуни и бронзы с кадмием и бериллием.

Алюминий легко окисляется на воздухе, покрываясь при этом прочной оксидной пленкой, которая защищает металл от дальнейшего окисления и обусловливает его высокую коррозионную стойкость. Удельное электрическое сопротивление проводникового алюминия не должно превышать 0,028 мкОм·м, обладает высокой пластичностью.

Серебро обладает минимальным удельным сопротивлением 0,016 мкОм·м; невысокие прочность и твердость, но хорошая пластичность. По сравнению с другими благородными металлами (золотом, платиной) серебро имеет пониженную химическую стойкость, тенденцию диффундировать в материал подложки, на которой оно нанесено.

Припои - сплавы, используемые при пайке металлов. Кроме высокой проводимости должны обеспечивать небольшое переходное сопротивление (сопротивление контакта). Различают два типа припоев: для низкотемпературной пайки с температурой плавления до 4000 и для высокотемпературной пайки. Температура плавления припоя должна быть ниже, чем температура плавления металла, подвергаемого пайке, припой должен хорошо смачивать поверхность, и температурные коэффициенты линейного расширения металла и припоя должны быть близки. Используют припои на основе олова, свинца, цинка, серебра, (сплавы этих металлов образуют эвтектические смеси), имеющие хорошую проводимость и сопротивление которых мало отличается от сопротивления металлов, образующих сплав. Для низкотемпературной пайки применяют оловяно-свинцовые и оловяно-цинковые припои: ПОС 61(61% олова, эвтектический сплав, температура плавления 1830), ПОЦ-90 (90% олова, эвтектический сплав, температура плавления 1990). Для температур меньше 1000 используют сплавы висмута со свинцом, кадмием, оловом (не обеспечивают высокой прочности, сплавы с висмутом хрупкие). В качестве высокотемпературных используют медь, медноцинковые, меднофосфористые припои (ПМЦ-36, 36% меди). Очень технологичны серебряные припои, хорошая растворимость, смачиваемость, высокие механические свойства, температура плавления от 779 до 920 (серебро с медью).

Контактные материалы. По принципу работы контакты подразделяются на: разрывные, скользящие и неподвижные.

К неподвижным контактам относятся цельнометаллические (сварные или паяные) зажимные (болтовые, винтовые) соединения. Цельнометаллические соединения должны отличаться не только ме­ханической прочностью, но и обеспечивать стабильный электри­ческий контакт с малым переходным сопротивлением. Качество за­жимного контакта определяется в основном контактным нажати­ем и способностью материала к пластической деформации. В связи с этим такие контактные поверхности целесообразно покрывать мягкими коррозионно-стойкими металлами (оловом, серебром, кадмием и др.).

Размыкающие контакты обеспечивают периодическое замыка­ние и размыкание электрической цепи. Более ответственная их фун­кция предопределяет и более строгие требования к ним: устойчи­вость против коррозии, стойкость к свариванию и действию элект­рической эррозии, стойкость к действию сжимающих и ударных нагрузок, высокие проводимость и теплофизические свойства.

В качестве контактных материалов для слаботочных размыка­ющих контактов кроме чистых тугоплавких металлов (вольфрама, молибдена) применяются благородные металлы (платина, золото, серебро), а также различные сплавы на их основе (золото-серебро, платина-рутений, платина-родий), металлокерамические компо­зиции (например, Ag-CdO).

Сильноточные размыкающие контакты изготовляются, как пра­вило, из металлокерамических материалов, которые получают ме­тодом порошковой металлургии. Они включают в себя компози­ции на основе меди и серебра: серебро-оксид кадмия, серебро-оксид меди, медь-графит, серебро-никель, серебро-графит.

Скользящие контакты должны дополнительно отличаться высо­кой стойкостью к истирающим нагрузкам. Наиболее высокими качествами обладают контактные пары, составленные из металлического и графитосодержащего материалов. Кроме низ­кого коэффициента трения графит и материалы на его основе от­личаются большим напряжением дугообразования, поэтому износ контактов от искрения незначителен.

Для скользящих контактов используются проводниковые бронзы и латуни, отличающиеся вы­сокой механической прочностью, стойкостью к истирающим на­грузкам, упругостью, антифрикционными свойствами и стойкос­тью к атмосферной коррозии. Для изготовления коллекторных пластин часто ис­пользуются твердая медь, а также медь, легированная серебром, и другие материалы.

Металлокерамика применяется для изготовления контактов из порошков заготовок или пропиткой се­ребром или медью предварительно прессованных пористых кар­касов из вольфрама или вольфрамоникелевого сплава.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: