double arrow

Металлическая связь

В результате электростатического притяжения меж­ду катионом и анионом образуется, молекула.

Ионная связь

Теорию ионной связи предложил в 1916г. немецкий ученый В. Коссель. Эта теория объясняет образование связей между атомами типичных металлов и атома­митипичных неметаллов:CsF, CsCl, NaCl, KF, KCl, Na2O и др.

Согласно этой теории, при образовании ионной связи атомы типичных металлов отдают электроны, а атомы типичных неметаллов принимают электроны.

В результате этих процессов атомы металлов превра­щаются в положительно заряженные частицы, которые называются положительными ионами или катионами; а атомы неметаллов превращаются в отрицательные ионы — анионы. Заряд катиона равен числу отданных электронов.

Атомы металлов отдают электроны внешнего слоя, а образующиеся ионы имеют завершенные электронные структуры (предвнешнего электронного слоя).

Величина отрицательного заряда аниона равна числу принятых электронов.

Атомы неметаллов принимают такое количество элек­тронов, какое им необходимо для завершения электрон­ного октета (внешнего электронного слоя).

Например: общая схема образования молекулы NaCl из атомов Na и С1: Na°-le = Na+1 Образование ионов

Сl°+1е-= Сl-

Na+1 + Сl-= Nа+Сl -

Na°+ Сl°= Nа+Сl - Соединение ионов

· Связь между ионами называется ионной связью.

Соединения, которые состоят из ионов, называются ионными соединениями.

Алгебраическая сумма зарядов всех ионов в моле­куле ионного соединения должна быть равна нулю,потому что любая молекула является электронейтраль­ной частицей.

Резкой границы между ионной и ковалентнои связя­ми не существует. Ионную связь можно рассматривать как крайний случай полярной ковалентнои связи, при образовании которой общая электронная пара полнос­тьюсмещается к атому с большей электроотрицательно­стью.

Атомы большинства типичных металлов на внешнем электронном слое имеют небольшое число электронов (как правило, от 1 до 3); эти электроны называются валент­ными. В атомах металлов прочность связи валентных электронов с ядром невысокая, то есть атомы обладают низкой энергией ионизации. Это обусловливает легкость потери валентных электронов ч превращения атомов ме­талла в положительно заряженные ионы (катионы):

Ме° -nе ® Меn+

В кристаллической структуре металла валентные элек­троны обладают способностью легко перемещаться от од­ного атома к другому, что приводит к обобществлению электронов всеми соседними атомами. Упрощенно строе­ние кристалла металла представляется следующим обра­зом: в узлах кристаллической решетки находятся ионы Меп+ и атомы Ме°, а между ними относительно свободно перемещаются валентные электроны, осуществляя связь между всеми атомами и ионами металла (рис. 3). Это осо­бый тип химической связи, называемой металлической.

· Металлическая связь — связь между атомами и ионами металлов в кристаллической решетке, осу­ществляемая обобществленными валентными электронами.

Благодаря этому типу химической связи металлы об­ладают определенным комплексом физических и хими­ческих свойств, отличающим их от неметаллов.

Рис. 3. Схема кристаллической решетки металлов.

Прочность металлической связи обеспечивает устой­чивость кристаллической решетки и пластичность метал­лов (способность подвергаться разнообразной обработке без разрушения). Свободное передвижение валентных электронов позволяет металлам хорошо проводить элект­рический ток и тепло. Способность отражать световые вол­ны (т.е. металлический блеск) также объясняется строе­нием кристаллической решетки металла.

Таким образом, наиболее характерными физическими свойствами металлов в зависимости от наличия металли­ческой связи являются:

■кристаллическая структура;

■металлический блеск и непрозрачность;

■пластичность, ковкость, плавкость;

■высокие электро- и теплопроводность; и склонность к образованию сплавов.


Сейчас читают про: