double arrow

Оценка вида распределения случайных погрешностей измерений. Построение гистограммы и полигона статистического распределения, статистические характеристики распределения


Анализ точечных диаграмм результатов многократных измерений одной и той же физической величины (серии измерений) является сравнительно простым и достаточно эффективным средством выявления и оценки погрешностей. Он позволяет выявлять и оценивать переменные систематические и случайные составляющие погрешности измерений и отбраковывать результаты с явно выраженными грубыми погрешностями.

Точечную диаграмму строят в координатах "результат измерения (наблюдение при измерении) X – номер измерения n". При построении диаграммы из технических соображений по оси ординат обычно предпочитают откладывать не сами результаты измерений, а их отклонения от некоторого условного значения. Масштаб желательно выбрать таким, чтобы размах R результатов измерений на диаграмме можно было оценить двумя значащими цифрами.

Точечная диаграмма результатов многократных измерений физической величины, полученных с помощью одной методики выполнения измерений, не дает представления о значении постоянной систематической погрешности. Диаграмма одной серии не содержит достаточной информации для такого анализа из-за отсутствия "опорного значения", которым можно было бы заменить истинное.




В качестве первичной оценки погрешности измерений в серии, включающей систематическую и случайную составляющие, может быть использован размах результатов многократных измерений (рис. 3)

R′ = Xmax – Xmin .

Чтобы получить геометрическое представление размаха R′ результатов измерений в серии, следует провести две прямые, параллельные оси абсцисс, через самую верхнюю и самую нижнюю точки точечной диаграмме.

Размах R' включает в себя как рассеяние результатов из-за случайной составляющей погрешности измерений, так и переменную систематическую составляющую погрешности, вызывающую закономерное изменение результатов во времени.

С использованием точечной диаграммы можно осуществить "частичное исправление" результатов измерений. Для этого на экспериментальные точки накладывают аппроксимирующую линию, которая отражает изменения результатов из-за систематических погрешностей, и, игнорируя эти изменения, переходят к оценке собственно случайных составляющих погрешности с использованием отклонений результатов от построенной тенденции их изменения. В этом случае считают, что аппроксимирующая линия полностью отражает систематические изменения результатов (линия "текущего среднего значения"), а отклонения от этой линии рассматривают как случайные составляющие погрешности каждого из наблюдений. Числовые оценки отклонений определяют по точечной диаграмме с учетом ее масштаба. Предложенный прием позволяет разделить и наглядно представить на диаграмме систематические и случайные составляющие погрешности измерений.

Размах R (рис. 4) определяют как расстояние между двумя линиями, проведенными эквидистантно аппроксимирующей линии через две наиболее удаленные от нее точки, а его значение рассчитывают с учетом масштаба точечной диаграммы).

XR R' N








Сейчас читают про: