double arrow

PVP-архитектура

PVP (Parallel Vector Process) – параллельная архитектура с векторными процессорами. Основным признаком PVP-систем является наличие специальных векторно-конвейерных процессоров, в которых предусмотрены команды однотипной обработки векторов независимых данных, эффективно выполняющиеся на конвейерных функциональных устройствах. Как правило, несколько таких процессоров (1-16) работают одновременно с общей памятью (аналогично SMP) в рамках многопроцессорных конфигураций. Несколько узлов могут быть объединены с помощью коммутатора (аналогично MPP). Поскольку передача данных в векторном формате осуществляется намного быстрее, чем в скалярном (максимальная скорость может составлять 64 Гбайт/с, что на 2 порядка быстрее, чем в скалярных машинах), то проблема взаимодействия между потоками данных при распараллеливании становится несущественной. И то, что плохо распараллеливается на скалярных машинах, хорошо распараллеливается на векторных. Таким образом, системы PVP-архитектуры могут являться машинами общего назначения (general purpose systems). Однако, поскольку векторные процессоры весьма дорого стоят, эти машины не могут быть общедоступными.

Наиболее популярны три машины PVP-архитектуры:

1) CRAY X1, SMP-архитектура. Пиковая производительность системы в стандартной конфигурации может составлять десятки терафлопс.

2) NEC SX-6, NUMA-архитектура. Пиковая производительность системы может достигать 8 Тфлопс, производительность одного процессора составляет 9,6 Гфлопс. Система масштабируется с единым образом операционной системы до 512 процессоров.

3) Fujitsu-VPP5000 (vector parallel processing), MPP-архитектура. Производительность одного процессора составляет 9.6 Гфлопс, пиковая производительность системы может достигать 1249 Гфлопс, максимальная емкость памяти – 8 Тбайт. Система масштабируется до 512 процессоров.

Парадигма программирования на PVP-системах предусматривает векторизацию циклов (для достижения разумной производительности одного процессора) и их распараллеливание (для одновременной загрузки нескольких процессоров одним приложением).

На практике рекомендуется выполнять следующие процедуры:

- производить векторизацию вручную, чтобы перевести задачу в матричную форму. При этом, в соответствии с длиной вектора, размеры матрицы должны быть кратны 128 или 256;

- работать с векторами в виртуальном пространстве, разлагая искомую функцию в ряд и оставляя число членов ряда, кратное 128 или 256.

За счет большой физической памяти (доли терабайта) даже плохо векторизуемые задачи на PVP-системах решаются быстрее на машинах со скалярными процессорами.


Сейчас читают про: